
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 

AN EXTENDED KALMAN FILTER FOR 
QUATERNION-BASED ATTITUDE ESTIMATION 

by 

Joäo L. Marins 

September 2000 

Chaiman of Committee and Supervisor:       Xiaoping Yun 
Committee Member: Eric R. Bachmann 
Committee Member: Robert G. Hutchins 

Approved for public release; distribution is unlimited. 

20001130 055 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing 
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or 
any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information 
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
September 2000 

3. REPORT TYPE AND DATES COVERED 
Engineer's Thesis 

4. TITLE AND SUBTITLE: 
An Extended Kaiman Filter For Quaternion-Based Attitude Estimation 

5. FUNDING NUMBERS 

6. AUTHOR(S) 
Marins, Joäo Luis. 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

8. PERFORMING 
ORGANIZATION 

REPORT NUMBER 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. PONSORING/MONTTORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 
The views expressed here are those of the author and do not reflect the official policy or position of the 
Department of Defense or the U.S. Government. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited. 

12b. DISTRmUnON CODE 

13.    ABSTRACT (maximum 200 words) 

This thesis develops an extended Kaiman filter for real-time estimation of rigid body motion attitude. The 
filter represents rotations using quaternions rather than Euler angles, which eliminates the long-standing problem of 
singularities associated with those angles. A process model for rigid body angular motions and angular rate 
measurements is defined. The process model converts angular rates into quaternion rates, which are in turn integrated 
to obtain quaternions. The outputs of the model are values of three-dimensional angular rates, three-dimensional 
linear accelerations, and three-dimensional magnetic field vector. Gauss-Newton iteration is utilized to find the best 
quaternion that relates the measured linear accelerations and earth magnetic field in the body coordinate frame to 
calculated values in the earth coordinate frame. The quaternion obtained from the optimization algorithm is used as 
part of the observations for the Kaiman filter. As a result, the measurement equations become linear. 
A new approach to attitude estimation is introduced in this thesis. The computational requirements related to the 
extended Kaiman filter developed using this approach are significantly reduced, making it possible to estimate 
attitude in real-time. Extensive static and dynamic simulation of the filter using Matlab proved it to be robust. Test 
cases included the presence of large initial errors as well as high noise levels. In all cases the filter was able to 
converge and accurately track attitude. 

14. SUBJECT TERMS 
Inertial Navigation, Extended Kaiman Filter, Quaternion 

15. NUMBER OF 
PAGES      114 

16. PRICE CODE 

INSECURITY C1ASSIFICATION 
OF REPORT 
Unclassified 

18.SECUKITYCLASSIFICATION 
OF THIS PAGE 
Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 
Unclassified 

20. LIMITATION 
OF ABSTRACT 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 298-102 



THIS PAGE INTENTIONALLY LEFT BLANK 



Approved for public release; distribution is unlimited 

AN EXTENDED KALMAN FILTER FOR QUATERNION-BASED ATTITUDE 
ESTIMATION 

Joäo Luis Marins 
Lieutenant Commander, Brazilian Navy 

B.S., Escola Naval (Brazil), December 1985 
B.S.E.E., Universidade de Säo Paulo (Brazil), December 1991 

Submitted in partial fulfillment of the 
requirements for the degrees of 

ELECTRICAL ENGINEER 
and 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

Author: 

Approved by: 

from the 

NAVAL POSTGRADUATEjSCHOOL 
September 2000 

Joäo Duis Marins 
\ 

SJ 

o-\^ 
Xiaoping Yun, Chairman of Committee and Supervisor 

££>!**■*=—   XT- 

Eric R. Bachmann, Committee Member 

Robert G. Hutchins, Committee Member 

- IhHrc^-^ 
Jeffrey B. Knorr, Chairman 

Department of Electrical and Computer Engineering 

in 



THIS PAGE INTENTIONALLY LEFT BLANK 

IV 



ABSTRACT 

This thesis develops an extended Kaiman filter for real-time estimation of rigid 

body motion attitude. The filter represents rotations using quaternions rather than Euler 

angles, which eliminates the long-standing problem of singularities associated with those 

angles. A process model for rigid body angular motions and angular rate measurements is 

defined. The process model converts angular rates into quaternion rates, which are in turn 

integrated to obtain quaternions. The outputs of the model are values of three- 

dimensional angular rates, three-dimensional linear accelerations, and three-dimensional 

magnetic field vector. Gauss-Newton iteration is utilized to find the best quaternion that 

relates the measured linear accelerations and earth magnetic field in the body coordinate 

frame to calculated values in the earth coordinate frame. The quaternion obtained from 

the optimization algorithm is used as part of the observations for the Kaiman filter. As a 

result, the measurement equations become linear. 

A new approach to attitude estimation is introduced in this thesis. The 

computational requirements related to the extended Kaiman filter developed using this 

approach are significantly reduced, making it possible to estimate attitude in real-time. 

Extensive static and dynamic simulation of the filter using Matlab proved it to be robust. 

Test cases included the presence of large initial errors as well as high noise levels. In all 

cases the filter was able to converge and accurately track attitude. 



THIS PAGE INTENTIONALLY LEFT BLANK 

VI 



TABLE OF CONTENTS 

I. INTRODUCTION 1 
A. MOTIVATION 1 
B. RESEARCH QUESTIONS 3 
C. THESIS OUTLINE 4 

H.        BACKGROUND 7 
A. INTRODUCTION 7 
B. ROTATING FRAMES 7 

1. Frames 7 
a. Rotation Matrices 8 
b. Euler Angles 8 
c. Axis and Angle Rotation 10 

2. Quaternions •-• 10 
a. Motivation 10 
b. Quaternions 11 
c. Quaternions Representing Rotations 13 

C. THE KALMAN FILTER 16 
1. Basics •••• 16 
2. The Kaiman Filter 17 
3. The Filter Structure  17 
4. The Discrete Kaiman Filter Algorithm 18 

HI.       THE MODEL 21 
A. INTRODUCTION 21 
B. THE PROCESS MODEL 21 

1. Defining the State and Output Variables 22 
2. The Process Model 23 
3. Relating Angular Rates and Quaternions 24 

IV.      THE KALMAN FILTER DESIGN 29 
A. OVERVIEW • 29 
B. FIRST APPROACH 29 

VII 



C. ALGORITHMS FOR QUATERNION CONVERGENCE 32 
1. Stating the Problem 32 
2. Minimizing the Error 33 

D. SECOND APPROACH 36 

V. MODELING SYSTEM NOISE 39 
A. INTRODUCTION 39 
B. PROCESS NOISE AND TIME CONSTANTS 40 
C. MEASUREMENT NOISE 43 
D. CO VARIANCE MATRIX OF THE MEASUREMENT 46 

VI. TESTS AND SIMULATIONS 49 
A. INTRODUCTION 49 
B. TESTS OF THE CONVERGENCE ALGORITHM 49 
C. STATIC TESTS OF THE COMPLETE FILTER 53 

1. Static Test 1 54 
2. Static Test 2 56 
3. Static Test 3 59 

D. DYNAMIC TESTS OF THE COMPLETE FILTER 61 
1. Generating Data 61 
2. Dynamic Test 1 62 
3. Dynamic Test 2 65 

VE.     CONCLUSIONS 69 
A. SUMMARY 69 
B. ANALYSIS OFRESULTS 70 
C. SUGGESTIONS FOR FUTURE WORK 70 

APPENDIX A - ROUTINES FOR CONVERGENCE TESTING 73 
APPENDIX B- EXTENDED KALMAN FILTER 77 
APPENDIX C- DATA GENERATION FOR SIMULATION 87 
LIST OF REFERENCES 91 
INITIAL DISTRIBUTION LIST 93 

Vlll 



LIST OF FIGURES 

Figure 2.1. Rotation Using Quaternions  15 

Figure 2.2. Kaiman Loop. From [ref. 9].  20 

Figure 3.1. Process Model for Angular Rates  23 

Figure 3.2. Determining the Quaternion Rates  25 

Figure 3.3. Process Model for Angular Rates and Quaternions.  27 

Figure4.5. Final Diagram for the Filter  36 

Figure5.1. Simulation of the Process Model for p, q, and r.  41 

Figure 5.2. Comparison Between Real and Modeled Processes  42 

Figure 6.1. Quaternion Convergence Using Gauss-Newton (no Noise)  50 

Figure 6.2. Quaternion Convergence Using Newton (no Noise)  51 

Figure 6.3. Quaternion Convergence Using Gauss-Newton (Measurement Noise)... 52 

Figure 6.4. Static Test 1 - Two Coincident Frames  54 

Figure 6.5. Static Test 1 - Convergence of Angular Rates  55 

Figure 6.6. Static Test 1 - Convergence of Quaternion Components  56 

Figure 6.7. Static Test 2 - Rotated Frame •  57 

Figure6.8. Static Test 2 - Convergence of Angular Rates  58 

Figure6.9. Static Test 2 - Convergence of Quaternion Components  58 

Figure 6.10. Static Test 3 - Frame Rotated About One of Its Axis , 59 

Figure 6.11. Static Test 3 - Convergence of Angular Rates  60 

Figure 6.12. Static Test 3 - Convergence of Quaternion Components  60 

Figure 6.13. Data Generation for Dynamic Tests  62 

Figure6.14. Dynamic Test 1 - Angular Rates Profile  63 

IX 



Figure 6.15. Dynamic Test 1 - Final Position After Rotation  63 

Figure 6.16. Dynamic Test 1 - Convergence of Angular Rates  64 

Figure6.17. DynamicTest 1 - Convergence of Quaternion Components  65 

Figure 6.18. Dynamic Test 2 - Angular Rates Profile  66 

Figure 6.19. Dynamic Test 2 - Final Position After Rotations  66 

Figure 6.20. Dynamic Test 2 - Convergence of Angular Rates  67 

Figure 6.21. Dynamic Test 2 - Convergence of Quaternion Components  67 



Table 5.1. 

Table 5.2. 

Table 5.3. 

Table 6.1. 

Table 6.2. 

Table 6.3. 

Table 6.4. 

LIST OF TABLES 

Values of Variance and Time Constant for the Process Model  41 

Values of Variance for the Measurement Noise  44 

Values of Variances for Angular Rates and Acceleration  44 

Experiment to Verify the Convergence Using Gauss-Newton Method... 53 

Static Test 1 -Initial and Steady-state Values  55 

Static Test 2 - Initial and Steady-state Values  57 

Static Test 3 - Initial and Steady-state Values  59 

XI 



THIS PAGE INTENTIONALLY LEFT BLANK 

Xll 



EXECUTIVE SUMMARY 

This thesis presented a complete design of an Extended Kaiman filter for real- 

time estimation of rigid body motion attitude. The use of quaternions to represent 

rotations, instead of Euler angles, eliminated the long-standing problem of singularities 

called "gimbal lock". 

A simple first-order process model for rigid body angular rate measurements was 

defined, which closely matched real process data obtained from angular rate sensors. 

The quaternion rates were nonlinearly related to the current quaternion and the 

angular rates. The process model converted angular rates into quaternion rates, which 

were integrated to obtain quaternions. 

Two approaches to the Kaiman filter design were investigated. The first approach 

used nine output equations: three angular rates, three components of linear acceleration, 

and three components of the earth magnetic field. Since these output equations were 

highly nonlinear functions of the process state variables, the partial derivatives needed 

for the Kaiman filter design were very complicated.   As a result, the Kaiman filter was 

not feasible for real-time implementation. 

The second approach utilized Gauss-Newton algorithm to find the optimal 

quaternion that related the values of linear accelerations and earth magnetic field in the 

body coordinate frame and in the earth coordinate frame. The optimal quaternion was 

used as part of the measurement for the Kaiman filter, which had seven output equations: 

three angular rates and four components of quaternions. Furthermore, the output 

equations were linear and the output matrix was the identity matrix. As a result, the 

partial derivatives were total derivatives and had constant values. The convergence 

algorithm replaced the computation of the partial derivatives of the nine nonlinear 

measurement equations. The following diagram represents the approach. 

xin 



Accelerometers 

Magnetometers 

Angular rate sensors 

g_ 
Gauss-Newton 

Algorithm 

computed 
measurements 

p.q. r 

a, b, c, d 

Kaiman 
Filter 

g 

h 

-*- p,q,r,a,b,c,d 

The computational requirements for the Kaiman filter developed using this 

approach were significantly reduced, making it possible to estimate attitude in real time. 

Extensive static and dynamic simulation of the filter using Matlab proved it to be 

robust. Test cases included the presence of large initial errors as well as high noise levels. 

In all cases the filter was able to converge and accurately track attitude. 

XIV 



ACKNOWLEDGMENTS 

I would like to thank Dr. Xiaoping Yun, who gave me the opportunity to work on 

this difficult and interesting topic. His assistance and patience enabled me to present 

difficult concepts in this thesis in a meaningful manner. 

I wish to express my sincere appreciation to Prof. Eric Bachman for his advice 

and suggestions during the process of writing and presenting my thesis. I know how 

important time is for a doctor's degree candidate. 

I express my gratitude to Dr. Hutchins, the first person who taught me how 

quaternions work. In his class I developed my first Extended Kaiman filter and learned 

all the background needed for this thesis. 

I specially thank Dr. Robert McGhee for the original vision of the quaternion 

convergence. His idea is the core of this thesis and led us all to great discoveries. 

Finally, I would like to thank my wife, Nice, for her love, support, patience and 

faith throughout this time. I would also like to thank my children, Andre and Amanda, 

whose love and very presence were a continual source of happiness and strength. 

XV 



THIS PAGE INTENTIONALLY LEFT BLANK 

XVI 



I. INTRODUCTION 

A.       MOTIVATION 

Navigation is the process of computing the position, orientation and speed of a 

body or vehicle. When this computation is based solely on inputs from self-contained 

inertial sensing instruments it is called inertial navigation. Angular rate sensors and 

accelerometers are typical inertial sensors. 

Inertial navigation systems integrate the output of accelerometers to obtain 

velocity, and integrate velocity to obtain distance traveled. In order to accomplish this, 

the system should know the orientation of the accelerometer axes relative to a fixed 

reference frame. Whether this orientation is fixed or not, leads to two different types of 

mechanizations for inertial systems. These mechanizations establish how the sensors are 

attached to the system. 

In the first type, the inertial sensors are mounted on a stable platform, which is 

connected to gimbals. Torque motors receive information from the angular rate sensors 

and drive the gimbals in order to keep the platform leveled and headed in a fixed 

direction (usually north, east, and down - NED). The position is calculated using the 

output of accelerometers directly. This kind of mechanization is called "gimbaled". 

Alternatively, the inertial sensors can be fixed to the vehicle. This mechanization 

is called "strapdown". In this case, the accelerations are measured with respect to body- 

fixed axes and they need to be converted into integration axes, normally earth-fixed axes. 



Thus, it is important to keep track of the orientation of the body with respect to the earth 

coordinates. 

Orientation can be defined as a set of parameters that relates the angular position 

of a frame to another reference frame. There are numerous methods for describing this 

relation. Among them, rotation matrices, Euler angles and quaternions are commonly 

used. In "strapdown" systems, they must be calculated at each step of the integration, so 

the coordinate transformation between frames can be carried out. Orientation or attitude 

tracking systems perform this task. They are used in navigation systems, mobile robots, 

head tracking and other applications. 

Attitude tracking systems might be implemented in different forms. [Ref. 1] 

presents a solution using GPS and inertial sensors used for aircraft. The difference among 

the GPS signals received by three antennas gives attitude information. [Ref. 2] replaces 

the antenna information with information coming from celestial observations. [Ref 3] 

describes an attitude package, which combines the outputs of inclinometers, gyros, and 

compasses to obtain attitude estimation. All three examples utilize Euler angles to 

represent orientation and a Kaiman filtering algorithm to integrate the information. 

The system in [Ref. 4] has a different approach. It uses what is called Magnetic 

Angular Rate Gravity (MARG) sensors. Each MARG sensor consists of three orthogonal 

rate sensors, three orthogonal accelerometers, and three orthogonal magnetometers 

mounted in a "strapdown" configuration. Quaternions represent the orientation between 

frames. The use of quaternions avoids the singularity problems characteristic of filters 

that use Euler angles. Integration of angular rate outputs provides an angular orientation, 



which is corrected with information coming from the accelerometers and magnetometers. 

A complementary filter estimates the attitude of a rigid body that the sensor is attached 

to. Complementary filters are used when the system deals with redundant measurement 

of same quantity corrupted with noises separated in frequency (low-frequency and high- 

frequency). They have fixed gains and normally are designed in the frequency-domain. 

This thesis intends to follow the same approach described above, but replaces the 

complementary filter with a Kaiman filter. The Kaiman filter blends information from the 

sensors to provide an optimal estimate from all sources combined. Instead of fixed gains, 

the gains of an Kaiman filter are adjusted at each step. 

The use of quaternions is maintained because of characteristics that make them 

very suitable for this approach. They can easily be transformed into a matrix and can be 

integrated easily due to their dependence on the angular rates. They are quadratic 

functions, which guarantees good convergence properties. These characteristics may be 

used to reduce the order of the output vector as well as the computational effort needed to 

run the filter. 

B.        RESEARCH QUESTIONS 

This thesis will examine the following research topics: 

- Evaluate the use of quaternions for representing attitude in conjunction with 

attitude filter design; 

- Design a Kaiman Filter that estimates attitude based on information provided 

by accelerometers, angular rates, and magnetometers; 



- Verify the viability of using the quadratic properties of quaternions to reduce 

the filter complexity and computational requirements; and 

- Test the filter performance using simulated data. 

C.       THESIS OUTLINE 

The purpose of this thesis is to present a complete study and implementation in 

Matlab of a Kaiman Filter that estimates the attitude of a body with respect to a fixed 

reference frame. The parameters that represent attitude are quaternions. The thesis is 

organized as follows: 

- Chapter II reviews the concepts of frames and compares several methods for 

representing frame rotations. It introduces the notion of quaternions and 

shows how they can represent rotations. It also reviews the basics of Kaiman 

Filters. 

- Chapter DI presents the process model used to develop the Kaiman filter. As 

the quaternion rate depends on the values of angular rates, the model utilized 

in this thesis is based on the relationship between angular rates and 

quaternions. 

- Chapter IV is the core of this thesis. It starts with the usual formulation of the 

Kaiman Filter. Subsequently, a more efficient method is presented, which 

reduces the order of the output vector and results in a linear state-output 

relationship. The link between these two approaches is the convergence 



properties of quaternions. Solutions based on the Gauss and Gauss-Newton 

convergence algorithms are presented. 

Chapter V describes the procedure applied to obtain the statistical properties 

of the system. 

Chapter VI presents tests of the convergence properties and describes the filter 

simulation. It explains how simulated data were created and discusses the 

results of applying that data to the filter. Static and dynamic tests were used to 

evaluate the filter performance. 

Chapter VII presents a short summary along with an analysis of results and 

conclusions. It ends with suggestions for the future work. 



THIS PAGE INTENTIONALLY LEFT BLANK 



II.  BACKGROUND 

A. INTRODUCTION 

There are several conventions for describing orientation and rotation in 3D space. 

Some are easier to visualize than others are. Each has some kind of limitation. This 

chapter presents the notion of a frame and gives an overview on three well-known 

orientation or rotation methods. Quaternions are introduced as an alternative method. 

It also presents the basics of the Kaiman filter by discussing the formulation and 

structure of the discrete Kaiman filter, which will be used in this thesis. 

B. ROTATING FRAMES 

1.     Frames 

In order to describe the orientation of a body, a coordinate system is attached to 

the body and then it is referenced to another fixed coordinate system. If the Cartesian 

coordinate system is adopted, a set of three orthonormal vectors is used. This set of 

vectors is called a frame. 

Two frames are used in this thesis. The earth frame is fixed and has its JC, y, and z- 

axes pointing North, East, and Down respectively. The body frame moves with the body 

being tracked and has its x, y, and z-axes parallel to the main axes of the body. The body 

axes point respectively to the front, right, and down. 



Any vector can be represented in a frame by three components. These 

components are the projections of the vector along each of the frame axes. Given the 

components of a vector in one frame, the components in another frame can be calculated 

provided that the relationship between the frames is known. 

a. Rotation Matrices 

Let Bv and £v be 3 x 1 vectors containing the components of a reference 

vector in frames B and E. There exists a 3 x 3 matrix R such that 

Ev=RBv, (2.1) 

where each column of R is the projection of each one of the frame-5 axes on the frame-is 

axes. 

Rotation matrices must be orthogonal (both frames with orthogonal axes) and 

orthonormal (all axes are orthonormal). Thus, although the matrix has nine elements 

these constraints reduce the number of degrees-of-freedom (DOF) to three. 

Using rotation matrices has some drawbacks [Ref. 5]. Violation of the above 

constraints during the execution of the algorithm may make it difficult to keep the matrix 

orthonormalized. Another problem is that it is very hard to interpolate rotations between 

two orientations. 

b. Euler Angles 

Suppose that a sequence of rotations is applied to a frame B about its own 

axes. The Euler Theorem states that three rotations are needed (no two rotations about the 



same axis) to make the frame B coincide with another frame E [Ref. 6]. The three angles 

are called Euler Angles. 

It is worth noting that each rotation is about the new coordinate frame obtained 

after the previous rotation. For example, a rotation sequence xyz means a rotation about x- 

axis, followed by a rotation about the new v-axis, followed by a rotation about the newer 

z-axis. 

There is one rotation matrix that represents each rotation described above. This 

compound rotation is the product of those three matrices and it is the same rotation 

matrix mentioned in the previous section. 

This method of describing orientation is efficient because it uses only three angles 

to represent three degrees-of-freedom. Euler angles are not constrained, so they dont 

have to be adjusted (see quaternion normalization). However, although only three angles 

represent the orientation, it may be necessary to construct a rotation matrix for each angle 

before performing a rotation. 

Other problems arise when using Euler angles [Ref. 5]. It is difficult to find a 

series of rotations that represent a single rotation. Furthermore, Euler angles have a 

singularity problem named "gimbal lock". It happens when the coordinate frame is 

rotated 90 degrees consecutively. 

For instance, suppose a frame with three orthonormal axes is rotated 90 degrees 

about the x-axis and 90 degrees about the new y-axis. The old x axis and the newer z axis 

are now aligned and one degree-of-freedom is lost. In this case, the rotations about the x 

and z axes are no longer unique and only their sum or difference can be described. 



c.        Axis and Angle Rotation 

This method is based on the concept of the Euler axis of rotation. The 

Euler axis is defined as the axis of rotation about which one coordinate frame can be 

rotated into another. In other words, there exists a pair composed of an axis and an angle 

(B v, 8) such that if a frame B is rotated about this axis through an angle 0 the final 

position of frame B coincides with the position of frame E. Note that the axis is 

represented in the original frame B. 

This method also has the problems cited in the previous sections with the 

exception of "gimbal lock". It is a step in the direction of another way to represent 

rotations, namely, quaternions. 

2.        Quaternions 

The attitude reference quaternion is a different way of representing the Euler axis 

and angle. It uses a set of four parameters: three represent the components of a vector 

directed along the Euler axis; the fourth is a scalar quantity. 

The discussion to follow describes how quaternions are used as an alternative to 

Euler angles in strapdown attitude systems. 

a.        Motivation 

Understanding how quaternions perform rotation is quite easy if the 

reasoning starts in two dimensions [Ref. 7]. Let v be a complex number 

v = e i + h, (2.2) 

10 



where / represents the imaginary number so that 

ii = -l (2.3). 

The complex number v can be thought of as a vector with two components e and h 

in the complex plane. 

Define another complex number u = ai+d with components 

a = sin 6 

d=cosd 
(2.4). 

The product of u and v is given by 

w = u v = (e cosd + h sind) i + (hcosß-e sind) (2.5). 

From the latter expression it is easy to notice that the product vector represents the 

vector v rotated by 6 in the complex plane [Ref. 7]. 

b.        Quaternions 

In 1843, Hamilton invented the so-called hyper-complex number of rank 

4, to which he gave the name quaternion. Quaternions are a four-dimensional extension 

to complex numbers. Based on Equation 2.3, Hamilton defined a similar rule for dealing 

with the operations on the vector part of the quaternion. He stated that 

i2 = j2 = k2 = i j k = -1 (2.6). 

A quaternion can be regarded as an element of 9l4. In this thesis, quaternions will 

be represented using the notation from [Ref. 7], which defines the quaternions as 

n = ai+b j + ck + d, (2.7) 

11 



where a, b, c, d are real numbers and i, j, k are unit vectors directed along the x, y, and z 

axis respectively. 

An alternative way of representing a quaternion is as the sum of a scalar and a 3- 

dimensional vector [Ref. 6]. The Equation 2.7 can be rewritten as follows 

n = n0 + n, (2.8) 

where the vector 

n = (a,b,c) = and   nQ = d = (2.9). 

When the scalar part of a quaternion is zero the quaternion is called a pure 

quaternion. 

The product of two quaternions is defined as follows. 

Let n and m be two quaternions such that 

n = ai+b j+ck+d = n0+n (2.10) 

m = ei +f j +g k + h = m0+ih (2.11). 

The quaternion product of n and m is defined so that the following special products are 

satisfied [Ref. 6]: 

? = f=k2=ijk = -i (2.12) 

ij = k=-ji 

jk=i = -k j 

ki= j = -i k 

(2.13) 

(2.14) 

(2.15). 

12 



Note that Equations 2.12 to 2.15 are the usual vector product for tri-orthogonal 

vectors. Then, applying all the above rules and the associative and commutative laws of 

scalar multiplication, the product of m and n is 

nm = d h — (ae+b f + c g)+ 

+d{ei+f j+gk)+h{ai+b j+ck)+ (2.16). 

+ {b g -c f) i + (ce-a g) j + {af-b e) k 

After separating the scalar and vector products, the above equation can be written 

n m = «0 m0-n in + n0 m + m0 n + n xin. (2.17). 

Note that the vector cross product that appears in the last term makes the 

quaternion product, in general, non-commutative. 

Another application for the notation "scalar plus vector" is the rotation using 

quaternions, which is focused on the next section. 

c.        Quaternions Representing Rotations 

A quaternion 

n = ai+b j+ck + d = n0+n, (2.18) 

such that 

n0=cos8 and |w| = sin0, (2.19) 

can be used to rotate a vector ü. Note that these two constraints make n a unit 

quaternion. 

In order to do that, ü must be written as a pure quaternion 

u = u0+ü = 0+ü (2.20). 

13 



The rotation is performed through the double quaternion multiplication 

nun , 

where n is the complex conjugate of the quaternion n defined as 

n =—ai—b j — ck + d = n0-n 

(2.21) 

(2.22). 

This operation rotates the vector «through an angle 20 about the axis defined by 

n or, similarly, rotates the frame through an angle - 20 about the axis defined by n. 

The operation using Equation 2.21 is equivalent to a matrix multiplication 

nun =Rü, (2.23) 

where 

R = 
d2+a2-b2-c2      2{ab-cd) 2{ac+bd) 

2{ab + cd)      d2+b2-a2-c2      l{bc-ad) 
2(ac-bd) 2{bc+ad)      d2+c2-b2-a2 

(2.24). 

In both cases it can be proved [Ref. 3] that the result is again a pure quaternion, 

which means it represents a vector. Furthermore, the final vector has the same length as 

the initial one. 

As a further example, suppose that a vector v pointing in the x-axis direction is to 

be rotated 120 degrees about the axis defined by (i, j,k) = (1,1,1). 

First, v should be written as a pure quaternion v 

v = (l,0,0,0). 

The unit vector representing the Euler axis is 

U/3'V3'V3." 

14 



This unit vector and the rotation angle are used to calculate the unit quaternion 

and its complex conjugate 

n = , cos 60° 
(I  1  1  1 
v2 2 2 2y 

" "      2'   2'   2'2 

Finally, the vector v is rotated using Equation 2.24 

Rv=nun =(0,1,0,0). 

As can be seen in Figure 2.1 a rotation of 120 degrees about the referred axis 

moves the vector v in jc-axis to a new position in y-axis. 

*v=(0,l,0,0) 

_L _L _L 
Vs'Vs'Vs 

v = (l, 0,0,0) 

Figure 2.1. Rotation Using Quaternions. 

15 



Quaternion rotation operators have no singularities and they can relate the 

components of a vector when it is represented in any two independent coordinate frames 

inSR3. 

C.     THE KALMAN FILTER 

1.        Basics 

The attitude of a body can be determined by either deterministic or non- 

deterministic methods [Ref. 8]. 

Deterministic models use two vectors representing the measurement in two 

different frames and calculate the matrix that transforms one coordinate system into 

another. For one measurement in each frame and no noise, the problem can be 

represented by a system of equations and easily solved. If there exists more than one 

measurement in one of the frames, which includes measurement noise, the solution is not 

unique and optimization methods must be used in order to find the best solution with 

minimum error. 

Non-deterministic methods combine dynamic and/or kinematics models with 

sensor data. Estimation algorithms utilize a time series of measurements in order to 

estimate the attitude of the body. Among them, the Kaiman Filter has been proven to be 

very useful for attitude estimation using vector measurements. 

16 



2. The Kaiman Filter 

The general Kaiman filter structure can be applied to a variety of problems. One 

of the principal advantages of the filter is that it allows the blending of information from 

several different sources to develop the optimum estimate. The resulting estimate is 

statistically optimal with respect to the input data. 

Kaiman filters compute the solution recursively. In particular, each updated 

estimate of the state is computed from the previous estimate and the new input data, so 

only the previous estimate requires storage. Thus, the Kaiman Filter is computationally 

more efficient than others filters that require all previous input data at each step of the 

filtering process and it becomes ideal for implementation on a digital computer. 

3. The Filter Structure 

The Kaiman Filter is a filter that can optimally estimate, in real time, the states of 

a system based on noise corrupted inputs. State variables describe system behavior as a 

function of time. Errors in modeling the system are treated as process. The noise is 

assumed to be a Gaussian random process with a known covariance matrix [Ref. 8]. 

The process noise is used to focus on the measurements more than on the model 

itself. The filter minimizes the covariance of the estimated error between the model 

output and the measurements. 

17 



4.        The Discrete Kaiman Filter Algorithm 

The following description of the Kaiman filter is based on [Ref. 9]. It assumes a 

process model with n states. The equation describing how the process evolves in time is 

XM=FkXk+Wk (2-25)- 

The measurement equations define how the outputs are related to the states. For a 

system with m outputs the measurement equation is 

zk=Hkxk+vk (2.26). 

Each term of Equations (2.25) and (2.26) an be defined as follows. 

xk       : (n x 1) process state vector at time tk 

F(xk) : (n x n) matrix relating the states xk to xk+l (state transition matrix) 

wk       : (n x 1) process noise vector with known covariance structure at timetk 

zk       : (m x 1) measurement vector at time tk 

H(xk): (m x n) matrix relating the states xk to the measurement yk 

vk       : (m x 1) measurement noise vector with known covariance structure at time tk 

The following covariance matrices are assumed for the noise vectors 

T      fön   i — k 
£K^Hn   -^ (2-27) 

[0,      i # k 

T      \Rk,   i=-k 
E[V*V']=   n        -^ <2-28> [0, l*K 

E[wkvJ] = 0,       for all i,k (2.29). 

18 



The discrete Kaiman Filter contains five recursive equations. A prior estimate of 

the state is updated using a correction proportional to the difference between the 

estimated output and the observation 

xk=x-k+Kk{zk-Hkx;) (2.30). 

The proportionality factor Kk is known as Kaiman gain. This gain is calculated 

such that the trace of the covariance matrix for the states is minimized is given by 

Kk=Pk-H
T

k(HkPk-H
T

k+Rk)-\ (2.31) 

where Pk  is the covariance matrix for the state xk. 

For the updated estimate of the state xk, a new covariance matrix can be 

computed 

Pt=(l-KkHk)F[ (2.32). 

The updated estimated is then projected ahead using the state transition matrix 

Finally, the covariance matrix for the projected state is calculated as 

Pk~+l= FkPkFk
T+Q„ (2-34). 

The complete loop of the algorithm can be seen in Figure 2.2. 

19 



Enter prior estimate \Q and 

its error cov ariance PQ 

Compute Kaiman gain: 

K^PkH^HkPkHj + Rk)-1 Z0>Z1>"- 

Pr oject ahead: 
xk+l = <l>kxk 
pk+l =<l)kpk<t,k

+Qk 

Compute error cov ariance 
for updated estimate : 

Pk=(I-KkHk)Pk- 

Update estimate with 
measuremen t zk : 

xk = xk + Kk(zk-Hkxk) 

Figure 2.2. Kaiman Loop. From [Ref. 9]. 

20 



IE.    THE MODEL 

A. INTRODUCTION 

This chapter presents the steps one needs to carry out before designing a Kaiman 

filter. It starts by defining the state variables. Characteristics of the sensor used make it 

necessary to include quaternion components as states. The relationship between 

quaternions and angular rates is derived, which allows the development of a process 

model for the complete system. 

B. THE PROCESS MODEL 

In order to start designing a Kaiman filter, three steps must be completed: 

- Choose the states of the system. The states or state variables are variables 

representing the dynamics of the system. The Kaiman filter is designed to 

estimate these variables; 

- Choose the output of the system. The outputs are variables related to the 

states, which are compared to observed values; 

- Define a process model for the state variables. A process model is a 

mathematical model that has white noise as an input and a signal with the 

same characteristics as the state variables in the output. In general, this model 

is nonlinear. 

The next sections explain how these three steps are conducted for that specific 

system. 

21 



1.        Defining the State and Output Variables 

The angular rates determine how the body behaves dynamically in space. Suppose 

the real values of angular rates were known. Given an initial position, integrating the 

angular rates through Euler equations would lead us to determine the orientation at each 

time step. Therefore, the angular rates can be used to represent the body dynamics and 

are included in the system state vector. 

The angular rates are defined as 

p: body angular velocity around the x axis (roll) 

q: body angular velocity around the y axis (pitch) 

r. body angular velocity around the z axis (yaw). 

The second step is to define the outputs of the system. The outputs are values that 

must be compared to observed values or measurements coming from the sensors. The 

measurements, in this case, are angular rates, gravity vector, and local magnetic field 

vector obtained respectively from the rate sensors, accelerometers, and magnetometers. 

All measurements are taken in body frame. 

Since the angular rates are included in state vector of the system and are also 

outputs, the first three elements of the output vector are identical to those of the state. 

This simplifies the filter design. 

However, the other six observations (in body frame) need to be compared to the 

real values of gravity and magnetic field (in earth frame). This comparison is performed 

after the coordinate transformation, which is based on the orientation parameters 

22 



estimated by the filter (quaternions). In other words, known values of gravity and earth 

magnetic field are obtained from gravimetric and magnetometric charts in earth 

coordinates. They are converted into body coordinates using the quaternions. Finally, 

they are compared to the observed values in body coordinates coming from the sensors. 

The last six elements of the output vector are related to constant values through 

the values of quaternion components, which are unknown. Thus, the quaternion 

components are included in the state vector as states to be estimated. The Extended 

Kaiman Filter becomes a seven-state filter in which the states are three angular rates and 

four quaternion components. 

Having defined the state and the output vectors, a process model for the state 

variables can be determined. 

2.        The Process Model 

The state vector as defined in the previous section has two sets of variables. The 

first set is the three angular rates and the second is the four components of the quaternion. 

The simplest process model for angular rates is one for generating those rates 

from white noise. Figure 3.1 shows a diagram of this process model. 

w "-rr* i 
-> 1 CO 

Figure 3.1. Process Model for Angular Rates. 

23 



In the diagram 

-wr is a 3-dimensional vector representing white noise sequences with known 

covariance structure that generate p, q, and r ; 

-Tr is the time constant for p, q, and r; and 

-co represents the angular rates p, q, and r. 

The variances of the white sequences and the time constants were adjusted so that 

the spectral characteristics of the signal generated by the model match those of the 

angular rates under normal operational conditions. Chapter IV will discuss how those 

values were chosen. 

The above model represents the derivative of the angular rates as a function of the 

angular rates. Similar representation is expected for the quaternion components. The 

derivative of the quaternions should be a function of the states (angular rates and/or 

quaternions). The next section derives the dynamics of quaternion components, so that 

they can fit in the state space representation. 

3.        Relating Angular Rates and Quaternions 

As it was seen in the beginning of this chapter, the quaternion components were 

included as states to be estimated. Therefore, a process model for quaternions must be 

defined. This means it is necessary to find out how the quaternion rates are related to the 

state (angular rates and qauternion components). This relationship can be obtained as 

follows [Ref. 7]. 

24 



Imagine three quaternions that perform the following rotations on a vector v 

mE§      :   rotates a vector in body frame into earth frame at time t 

mB«tS '■   rotates a vector in body frame into earth frame at time t + At 

nB(lito)  '■    rotates a vector in body frame at time t + At to body frame at time t. 

Figure 3.2 shows the reference frame, the vector v in two different instances and 

the quaternions involved. 

v(0 
mE(t) 

n
B(t+6s)    yST 

v(t + At) 

Earth 
Frame 

Figure 3.2. Determining the Quaternion Rates. 

The variation of the quaternion m in the interval t + At is 

amB — mfi((+Ar)     rnB^ (3.1). 

Using the chain rule 

mB(t+&t)  ~mB(t)   nB(l+&) 
(3.2). 

25 



Substituting Equation (3.2) into (3.1) leads to 

dmE =      £<*)     B{i)      _     Bit) =      E(t) I   «<»)       _ A (3.3). 

Notice that n%[Hm is the quaternion rotating from the position at time t + At to 

the position at time t. If the rotation is through an angle a about an axis ü, the 

corresponding quaternion can be represented as 

n BO)       _ 
B(t+At) ~ sin 

v2y 
+ COS 

(cc\    1, 

v2y 
--Ü + 1 

2 
(3.4). 

Substituting (3.4) in (3.3) produces 

dmE =mE(t) 1-    ,     , 
—M+l-1 
2 

1 
m£(0 u mB(t)   u (3.5). 

The above expression is divided by the time interval and evaluated in the limit 

when the interval goes to zero. As w is the direction of the Euler axis for the rotation 

between two positions in the same frame, ü is stationary in this frame. Thus, the 

derivative in time of ü is the angular rate of the body frame. 

™EB=-™EB<»B (3.6). 

This equation indicates that the quaternion rates are a function of the body angular 

rates. Therefore, they can be included in the process model as if they were generated 

from the angular rates. 

Unlike the angular rates, the quaternion componentes are generated from a 

mathematical expression and not from a process driven by white noise. This part of the 

model can be appended to the first one to complete the process model. 

26 



Using Equation 3.6, the^process model becomes 

W_ 

Figure 3.3. Process Model for Angular Rates and Quaternions. 

where 

0 r     -q p 

-r 0      p q 

q -p     0 r 

-p -q    -r 0 

is a matrix whose elements are the angular rates and 

co = (3.7) 

n = - 
n 

\n\ 
(3.8) 

normalizes the quaternion to unit length. 

Since unit quaternions are needed to perform the necessary rotation, the 

normalization is the constraint to be applied in this case. 

The states and outputs of the system are defined as well as the process model. The 

design of the Kaiman filter starts in the next Chapter. 

27 



THIS PAGE INTENTIONALLY LEFT BLANK 

28 



IV. THE KALMAN FILTER DESIGN 

A. OVERVIEW 

The Kaiman filter solves the minimum mean-square error (MMSE) filtering 

problem using state space methods. It has great applicability in situations with nonlinear 

measurement relationships [Ref. 9]. The Extended Kaiman filter linearizes the equations 

about a trajectory that is continually updated using states estimates. 

This chapter starts presenting the state and output equations used for the Kaiman 

filter design. Two approaches are discussed. The first approach works with a set of 

nonlinear equations, but is extremely complicated. The second approach is based on the 

convergence properties of quaternions. It leads to another way to solve the problem 

without dealing with nonlinear measurement equations. This approach is used for the 

design in this thesis. 

B. FIRST APPROACH 

As was discussed in Chapter in, the filter states are: 

x, :      angular rate p 

x2:     angular rate q 

x3:      angular rate r 

JC4 :     quaternion component a 

x$:     quaternion component b 

29 



x6:     quaternion component c 

x1 :     quaternion component d (scalar component) 

Based on the model from Figure 3.3 the state equations can be written as 

i,= *,+ — wa (4.1) 
T Z rx rx 

x2 = x2+—w (4.2) 
T T 

j3 = x, +—wn (4.3) 
T T rz rz 

X. = 

2^ 
2 2 2 2 

(x3 x5 - x2 xk + xx x1) (4.4) 

x, = — 2       2       2 (~*3 *4 +*ix6+ x2 x7) (4.5) 
2-y x4  + x5 

1 

2-^ 2   ,        2   ,        2   ,        2 
■ (x2 x4 -X) xs + x3 Xj) (4.6) 

t7 —     . 

H 
r(-^r, x4 - x2 x5 - x} xb) (4.7). 

JLA        "T"  -£e        *T* A/r        T"  Jt^ 

It should be noted that besides the non-linearity in the parenthesis introduced by 

quaternion integration, square-rooted terms appear in the denominator due to the 

quaternion normalization. 

The outputs are the angular rates, and the known values of gravity and local 

magnetic field converted to body coordinates. They are compared to the measurements. 

The first three measurements come from the rate gyros. The last six are readings coming 

from the accelerometers (low frequency components) and from the magnetometers. 

30 



The outputs are defined as: 

z, :     angular rate p 

z2 '■     angular rate q 

z3:     angular rate r 

z4:     component of gravity on the jc-axis of the body frame 

z5:     component of gravity on the y-axis of the body frame 

z6:     component of gravity on the z-axis of the body frame 

z7 :     component of the local magnetic field on the x-axis of the body frame 

z8:     component of the local magnetic field on the y-axis of the body frame 

z9:     component of the local magnetic field on the z-axis of the body frame 

The major difficult with this approach is that the coordinate transformation 

involves the computation of a matrix to perform this transformation. This matrix is the 

same as that presented in equation 2.24, but uses the values of normalized quaternions. 

R = 

\d2+a2-b2-c2) 2(ab-cd) liac+bd ) 
liab+cd) (d2+b2-a2-c2) 2{bc-äd) 
2{äc-bd) l(bc + äd)        (d2 +c2 -b2 -a2 ) 

(4.8) 

The filter design was started using this approach but the output equations become 

quite complicated. As the design of the Extended Kaiman filter involves partial 

derivatives, the final expression seemed to be mathematically too complex to allow real- 

time applications. 

Equation 4.9 shows one of the six output equations for this approach 

31 



_ (*4
2 + x7

2 -x5
2 -x2)hx + 2(x4 x5 -x6x7) h2 + 2(x4x6 +x5x7) h3 

<-4 I 2 2 2 ' (4-9) 
4   *i   Ar   "T" -&£   ™i   J\fj 

where 

A,, ä2 , an£? A3 are values of earth magnetic field measured in earth coordinates. 

A second approach is described in the next section. It has two key advantages. It 

not only reduces the dimension of the output vector but also requires less computational 

effort. 

C.       ALGORITHMS FOR QUATERNION CONVERGENCE 

1.        Stating the Problem 

Imagine a body in which a tri-orthogonal frame is placed at its center of gravity. If 

three accelerometers and three magnetometers are fixed to the origin of the frame, they 

start measuring components of the gravity and of the earth magnetic field in the axis of 

the frame. As these values are known and constant for a limited geographic area, one can 

expect that there exists a quaternion relating the measurements (values in body frame) to 

the real magnetic and gravity fields (values in earth frame). 

Obviously there are several sources of errors, including: 

- misalignments between pairs of axes in each sensor; 

- impossibility of placing both sensors at the center of the body; 

- variation of both gravity and magnetic field; and 

- errors inherent to the sensors. 

32 



That means there is no quaternion that exactly converts what is measured (body 

frame) into the known values (earth frame). The solution is to determine the best 

quaternion such that, after the conversion, some criterion is satisfied. This chapter 

examines this problem using the minimum-squared-error (MSE) criterion. The approach 

is similar to that applied in [Ref. 4], but there a complementary filter was used. Another 

difference is that the error is minimized in earth frame in this derivation. Two different 

algorithms are evaluated and some discussions about the convergence properties are 

presented. 

2.        Minimizing the Error 

Let Q be the error function defined as 

*Q = ere =(Ey, - M \)T (** - M \), (4.10) 

where 

Eyx: is a 6x1 vector with values of gravity and magnetic field in the earth frame 

By0: is a 6x1 vector with the measurements in the body frame 

and 

M = 
R   0 

0   R 

where R is the matrix defined by Equation 2.24. 

Because y0 and yi are known, the error is a function of the matrix M , and thus 

it depends on the four components of the quaternion. The objective is to find iteratively 

the values of quaternion components that give the minimum error. 

33 



Several optimization algorithms exist in the literature. Among them the Gauss and 

Gauss-Newton are the most used ones. The main difference between them is that the 

former uses the first and second derivatives of the error function (gradient and Hessian) 

and the latter uses only the first derivative (Jacobian), which is related to the gradient. 

The different properties of convergence will be addressed at the end of this chapter. 

The formulation for the iterative algorithm can be found in [Ref. 10]. For the 

Gauss-Newton method it is given as 

nM =nk -[jT(nk)J(nk)V JT(nk) 
Ee(hk) (4.11) 

where 

h is a vector with the four components of the quaternion and 

J is the Jacobian matrix defined as 

J-- 
L{da _     ) db Jo 

dRB, 
dc y0 

\ a/? B 

For the Newton method 

Ä*+.=Ä*-[va.£ß(Ä4)]-
,[v/ß(«t)] 

(4.12). 

(4.13) 

where 

V „EQ is the gradient of the error function Q calculated in earth coordinates with respect 

to each one of the quaternion components. The gradient is calculated using the formula 

34 



V„ EQ = -2 

y0 da 

lb   y° 
fdR 

\T 

dc 
fdR 

dd 

y0 

v 
>o 

(Ey>-RByQ) 
(4.14). 

In the same way, the Hessian is the second derivative of the error function Q calculated in 

earth coordinates with respect to each one of the quaternion components. It is calculated 

by the formula 

V2„£ß = 

d2R 
da2 

d2R 

d2R 

ddda 

dadd 

d2R 
dd2 . 

'* ("*-*'*)- 

Tay° 
Y 
) 

'dR*    ^ 
dd y« 

da 

'dR,     V 
w'y° /   -i 

(4.15). 

So, the main goal is to find the best values for a, b, c, d such that when the matrix 

R is used to convert the measurements to earth frame the error is minimized. 

It is worth noting that, as the matrix R represents a coordinate transformation, it 

is orthonormal. Thus, the only difference when minimizing the error in body coordinates 

is that the transpose of R is applied to the known values in earth frame. This leads to 

similar expressions and does not affect the convergence properties. 

35 



D.       SECOND APPROACH 

With the introduction of the convergence algorithm as an external loop to the 

Kaiman filter, the quaternion components are now computed measurements. No 

equations involving coordinates transformations need to be evaluated. The algorithm is 

initialized using the last value of quaternion, which, for small step sizes is very close to 

the next value. Figure 4.5 shows how simple the filter becomes and gives a general idea 

of the data flow. 

Once again, it should be noted that regardless of where the error is minimized 

(body or earth coordinates), the convergence is not affected. However, it is important that 

the Kaiman filter knows which one is being used. 

V 
Accelerometers 

Gauss-Newton 
Algorithm 

p 

Bh 
g 

F * 
Magnetometers h 

comp 
measure 

uted 
jments 

a, b, c, d 

p.q.r Kaiman 
Filter Angular rate sensors *" P>q>r,a,b,c,d 

Figure 4.5. Final Diagram for the Filter. 

36 



For the final system the inputs are the same as before. However, the new outputs 

are 

z, :      angular rate p 

z2 '■     angular rate q 

z3:      angular rate r 

z4 :     quaternion component a 

z5:     quaternion component b 

z6:     quaternion component c 

z-j :     quaternion component d. 

As can be seen the outputs are identical to the states. They are no longer related to 

the states by the nonlinear equations. 

37 



THIS PAGE INTENTIONALLY LEFT BLANK 

38 



V. MODELING SYSTEM NOISE 

A.       INTRODUCTION 

One important assumption in the Kaiman Filter is that any errors in the control 

input vector and the measurement vector are zero-mean and follow a Gaussian 

distribution. The Kaiman Filter uses those two vectors as well as their covariance 

matrices. They are determined based on the motion dynamics of the body or vehicle 

(input vector) and on the characteristics of the sensors used (measurement noise). In order 

for the filter to achieve its best performance, the statistical properties of those vectors 

must be determined 

It happened that, at the time this thesis was written, neither MARG sensors nor 

data from rigid body experiments were available. The only data set available was from 

experiments with the Small Autonomous Underwater Vehicle Navigation System 

(SANS) [Ref. 11]. That set includes readings of angular rates and gravity for one 

experiment and was used as basis for determining the statistical characteristics of the 

process to be estimated and of the sensors utilized. The following sections describe the 

procedures applied to obtain the statistical properties of both the input and measurement 

vectors. 

39 



B.       PROCESS NOISE AND TIME CONSTANTS 

The process noise wk is the noise that when applied as an input to the process 

model gives the desired process as the output. Figure 3.2 is repeated here. It represents 

the process model for the angular rates and quaternions. 

W, 

Figure 3.2. Process Model for Angular Rates and Quaternions. 

The goal is to determine the values of noise variance and time constants that 

generate values ofp, q, and r matching with real ones. It was assumed that the operation 

conditions of the vehicle were known (in this case the underwater vehicle). Values of 

angular rates from the SANS test were used. The process model was simulated with 

Simulink. Figure 5.1 shows the corresponding diagram. The S-function is a Matlab 

ODE45 routine that integrates Equations 4.1 through 4.7. 

40 



Ef- 
Random 
Number! 

E-B 
Random 
Number2 

fitf 

process 

S-Function To Workspace 

Random 
Number 

Clock To Workspace 1 

Figure 5.1. Simulation of the Process Model for/;, q, and r. 

The values of noise variance and the time constants were adjusted until the best 

match was obtained. Table 5.1 presents the best values for the parameters. 

Variance (rad2/sec2) Time constant (sec) 

p lxlO14 0.002 

9 lxlO"4 0.15 

r 9xl0'2 1.0 

Table 5.1. Values of Variance and Time Constant for the Process Model. 

The results of the simulation using the Simulink and the values of Table 5.1 were 

compared to the real values of angular rates. As the model is a simple first order model, 

the results can be considered satisfactory. Figure 5.2 shows a comparison between the 

real and the simulated processes. 

41 



X10      Real Values of Angular Rates x10   Values Generated by the Model 

-0.05 
10 20 30 40        50 

10 20 30 40        50 
time (sec) 

0 10 20 30 40 50 

0.05 

o-        0 

-0.05 
10        20 30 40 50 

10 20 30 40 50 
time (sec) 

Figure 5.2. Comparison Between Real and Modeled Processes. 

Two facts should be mentioned. First, the process model as depicted in Figure 3.2 

does not have noise generating quaternions. Therefore only three variances are needed to 

describe the statistics of the process. Despite that, one has to keep in mind that the 

Equations 4.1 through 4.7 rule the entire process. So slight changes on the values of 

variance or time constant of the variable p can affect the processes of the other six 

variables. 

42 



Second, there is no means of checking the values of the quaternions generated by 

the model. However, as that part of the model involves only mathematical equations of 

deterministiv nature, it is expected that the model fits reality. 

Based on the above assumptions, the covariance matrix of the process noise is 

defined as 

Q 

lxlO"14 0 0 

0 LclO-4 0 

0 0 9xi(r2 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 o" 
0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
0 0 0 0 

0 0 0 0 

(5.1). 

Note that the cross correlation terms are all zero. 

C.       MEASUREMENT NOISE 

The values of measurement noise for the rate sensors and accelerometers were 

determined from the same data set. Small intervals in which the values of the angular rate 

and gravity components seem to be stationary were used to estimate the values of 

variances. Table 4.2 presents the values obtained. 

The values above can be compared to those from [Ref. 3] and [Ref. 8]. They both 

use MotionPak inertial measurement units made by Systran Donner, which include 

Sundstrand Q-Flex accelerometers and Systran Donner GyroChips. The values used in 

those references are presented in Table 5.3. As can be seen the estimated values from 

43 



Table 5.2 are quite reasonable and thus, they are be used for noise variances of the 

angular rate sensors and accelerometers. 

Variance 

p 5.4 x 10"9 (rad/sec)2 

q 2.2 x 10"4 (rad/sec)2 

r 8.4 x 10-4 (rad/sec)2 

gx 0.012 (m/sec2)2 

gy 0.028 (m/sec2)2 

gz 0.002 (m/sec2)2 

Table 5.2. Values of Variance for the Measurement Noise. 

Angular rates Acceleration 

[Ref. 8] 7.6 x 10"5 (rad/sec)2 0.01 (m/sec2)2 

[Ref. 9] 6.4 x 10"3 (rad/sec)2 3 x 10"5 (m/sec2)2 

Table 5.3. Values of Variances for Angular Rates and Acceleration. 

The data set does not include measurements of the earth's magnetic field. 

Therefore, no estimate can be made. However, [Ref. 9] mentions the variance for a two- 

axis magnetometer made by Precision Navigation Inc. as 2 degrees. That value 

44 



v3 corresponds to a variance of approximately 10  if one considers a unitary normalized 

value for earth magnetic field. 

Given the above discussion, the measurement noise covariance matrix can be 

writfc ;nas 

"5.4xl0"9 0 0 0 0 0 0 0 0 

0 2.2*i(r4 0 0 0 0 0 0 0 

0 0 8.4xl(r4 0 0 0 0 0 0 

0 0 0 0.012 0 0 0 0 0 

Q = 0 0 0 0 0.028 0 0 0 0 

0 0 0 0 0 0.002 0 0 0 

0 0 0 0 0 0 0.001 0 0 

0 0 0 0 0 0 0 0.001 0 

0 0 0 0 0 0 0 0 0.001 

(5.2) 

Note that all cross correlation terms in Q are also zero. 

Another important observation is related to the dimension of Q. The matrix is 9 x 

9 because it reflects the noises of nine sensors that furnish the measurements. However, 

the state space was defined as having six states and seven outputs. None of those 

accelerations or magnetic fields appear directly in the measurements. As it was discussed, 

the measurements are converted through the convergence algorithm into quaternions 

measurements. That conversion transforms the 9 x 9 Q matrix into a new 7 x 7 Q matrix 

explained in the next section. 

45 



D.       CO VARIANCE MATRIX OF THE MEASUREMENT 

From the convergence algorithm (Equation 4.11), the following relationship is 

determined between the measurement, which has known covariance matrix, and the 

quaternion components: 

nk+1 =nk-F{nk)[Ey-R(nk) 
By] (5.3) 

"*+i = »* " H"k) Ey + F("k) R{nk) 
By (5.4). 

That means the values for the quaternions that the convergence algorithm 

calculates are a function of the previous value or the guess. F{nk) depends on which 

type of algorithm is being used (Newton or Gauss-Newton). 

The above expression can be rewritten as 

y = Ax+B, (5.5) 

where 

B = nk-F(nk)
Ey (5.6) 

and 

A = F(nk)R(nk) (5.7). 

Assume that after one step the optimization algorithm converges to a reasonable 

value and that the initial guess always has the same value. Then, the parameters A and B 

are constant for any iteration of the Kaman filter. Using the same procedure as [Ref. 9], 

the covariance matrix for the quaternion components is given by 

Cn=ACyA
T (5.8). 

46 



Two observations should be made. If the initial guess is not the same, the values 

of A and B change at each of the Kaiman filter iteration. This is not a problem because it 

is easy to implement a covariance matrix that depends on the guess. Second, even if one 

considers that the convergence takes more than one iteration, the values of A and B are 

still functions of the initial guess. 

In this thesis the first option is used and the covariance matrix is updated on each 

step with the value of A = F{nk) R(nk) coming from the convergence algorithm. 

47 



THIS PAGE INTENTIONALLY LEFT BLANK 

48 



VI. TESTS AND SIMULATIONS 

A. INTRODUCTION 

The Extended Kaiman filter design based on the second approach achieves good 

results provided the algorithm that calculates the computed quaternion converges in few 

steps. 

This chapter begins describing how the Kaiman filter algorithm was tested and 

presents some results of the convergence process. It also presents all static and dynamic 

tests performed on the complete filter. 

As no MARG sensor was available at the time this thesis was being completed, all 

data used here is generated mathematically. 

B. TESTS OF THE CONVERGENCE ALGORITHM 

The objective of the test is to check the convergence for different rotations, initial 

estimates, and noise levels. A six-element vector is chosen, which contains the 

components of gravity and local magnetic field vectors. An arbitrary quaternion is 

selected and used to rotate the initial vector. Gaussian noise is added to the rotated vector 

in order to simulate the measurement noise. The initial guesses are always values around 

the real value of the quaternion. The following examples illustrate the procedure. 

Suppose the following values are measured in body frame: 

By = [l   3   5    2   -4   0] 

and the values in earth frame as known as 

49 



Ey = [5   13   0   2   -4]. 

The initial guess is taken to be the quaternion 

« = [0.3   0.4   0.6   0.7], 

which after normalization is 

« = [ 0.2020   0.3030   0.6061   0.7071]. 

Figure 6.1 shows the convergence when using the Gauss-Newton method. As can 

be seen, the algorithm converges in only three iterations. Figure 6.2 shows the 

convergence for the Newton algorithm. In both cases, no noise was added. 

0.9 

0.8 

Quaternions Convergence 

0.2 
2 3 
iteration number 

Figure 6.1. Quaternion Convergence Using Gauss-Newton (no Noise). 

50 



Quaternions Convergence 

3 4 
iteration number 

Figure 6.2. Quaternion Convergence Using Newton (no Noise). 

In the experiments above, the quaternion converges to h = [ 0.5   0.5   0.5   0.5 ]. 

As it was shown in Chapter II, this quaternion corresponds to a rotation of 120 

degrees about the axis [ 1 1 1 ]. As there is no measurement noise, the values are the 

same in both frames but with the order changed. The error in this case is zero. 

Suppose noise is added to the measurement such that 

'y = [l2   3.1   4.8   1.9   -3.7   0.3] 

The algorithm now converges to the quaternion 

h = [ 0.5291   0.5127   0.4912   0.4989]. 

51 



This is the best value that can be found and the error is different from zero. Figure 

6.3 shows the convergence using the Gauss-Newton algorithm. 

T3 

o 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

Quaternions Convergence 

s 
\ 
\ 

• 

»■»»  a 
—-- b 

/v***"^,J'   
■ /   ••* 

* 
» 

■ 

1 3 4 
iteration number 

Figure 6.3. Quaternion Convergence Using Gauss-Newton (with Measurement 

Noise). 

Extensive simulation was carried out with the Matlab routine from Appendix A. 

In this routine two unit vectors represent gravity and local magnetic field. The following 

elements are set in the routine: 

a vector representing the axis of rotation 

- the variance of the measurement noise 

- distance between the real value of quaternion and initial estimates. 

The program rotates the unit vectors about the axis of rotation through several 

angles, adds noise, and solves the convergence problem for each case. 

52 



Table 6.1 shows how the values converge after three iterations of the Gauss- 

Newton algorithm. The vectors are rotated about the axis m = [ 1   3   2 ] through different 

angles and the noise measurement has standard deviation 0.05. 

Angle a a_hat b bhat c c_hat d dhat 

20 0.0464 0.0465 0.1392 0.1379 0.0928 0.0939 0.9848 0.9849 

40 0.0914 0.0905 0.2742 0.2765 0.1828 0.1816 0.9397 0.9394 

60 0.1336 0.1347 0.4009 0.3992 0.2673 0.2680 0.8660 0.8664 

80 0.1718 0.1676 0.5154 0.5205 0.3436 0.3413 0.7660 0.7645 

100 0.2047 0.2046 0.6142 0.6143 0.4095 0.4094 0.6428 0.6428 

120 0.2315 0.2311 0.6944 0.6946 0.4629 0.4628 0.5000 0.4999 

140 0.2511 0.2511 0.7534 0.7534 0.5023 0.5023 0.3420 0.3420 

160 0.2632 0.2605 0.7896 0.7911 0.5264 0.5256 0.1736 0.1734 

180 0.2673 0.2768 0.8018 0.7970 0.5345 0.5369 0.0000 0.0000 

200 0.2632 0.2460 0.7896 0.7976 0.5264 0.5232 -0.1736 -0.1721 

220 0.2511 0.2548 0.7534 0.7517 0.5023 0.5027 -0.3420 -0.3426 

240 0.2315 0.2384 0.6944 0.6909 0.4629 0.4630 -0.5000 -0.5015 

260 0.2047 0.2097 0.6142 0.6115 0.4095 0.4090 -0.6428 -0.6440 

280 0.1718 0.1751 0.5154 0.5135 0.3436 0.3428 -0.7660 -0.7669 

300 0.1336 0.1338 0.4009 0.4008 0.2673 0.2672 -0.8660 -0.8661 

320 0.0914 0.0937 0.2742 0.2732 0.1828 0.1815 -0.9397 -0.9400 

340 0.0464 0.0476 0.1392 0.1390 0.0928 0.0917 -0.9848 -0.9849 

360 0.0000 -0.0003 0.0000 -0.0003 0.0000 0.0005 -1.0000 -1.0000 

Table 6.1. Experiment to Verify the Convergence Using Gauss-Newton Method. 

C.       STATIC TESTS OF THE COMPLETE FILTER 

The purpose of the static tests is to verify that the filter converges to the correct 

steady-state values after a single rotation. The body frame of the sensors is at rest, but 

with a fixed orientation relative to the earth frame. Among the ten different tests 

performed, three are presented in this thesis as described below. 

53 



1. Static Test 1 - Two Coincident Frames 

Figure 6.4 shows the position of the vectors involved in both body and earth 

frames. 

► y 

Earth Frame 

► y 

Body Frame 

Figure 6.4. Static Test 1- Two Coincident Frames. 

Unitary values of g (gravity) and h (magnetic induction) were used. The 

measurements were generated as 

!g=(0,0,-l) and Bh = {- 0.5,0,0.866). 

The measurement noises specified in Chapter V were added to those values that 

represent the sensor readings in the body frame. 

Table 6.2 shows the initial values utilized for the states and the expected steady- 

state values. Figures 6.5 and 6.6 present the simulation results. 

54 



P q r a b c d 

Initial Values 1.0 1.0 1.0 0.5 0.5 0.5 0.5 

Steady-state Values 0 0 0 0 0 0 1.0 

Table 6.2. Static Test 1 - Initial and Steady-state Values. 

Covergence of Angular Rates 
-»  1 
Ü 
0) 
•2 
S   0 V 

0.5 1.5 2 
time (sec) 

Figure 6.5. Static Test 1 - Convergence of Angular Rates. 

55 



0.5 

to       0 

Cove rgence of Quate rnior Com po nents ■ ai -i ■ bj + ck + d 

A 
1 1 

■ 

0 0.5 1 1.5 2 2.5                3 

xj       0 

-0.5 

0.5( 

o       0 

-0.5 

1.5( 

■o      1 

n n 

\ 

) 0.5 1 1.5 2 2.5               3 

■ 

) 0.5 1 1.5 2 2.5               3 

/ i  1  

0.5 1 1.5 2 
time (sec) 

2.5 

Figure 6.6. Static Testl - Convergence of Quaternion Components. 

2. Static Test 2 - Frames Related by the Quaternion (0.5,0.5 ,0.5,0.5) 

Figure 6.7 shows the position of the vectors involved in both frames. This case 

corresponds to that discussed in Chapter II. Both frames are coincident and then the body 

frame is rotated 120 degrees about the axis fh = [ 1   1   1 ]. 

56 



► y 

Earth Frame 

► x 

Body Frame 

Figure 6.7. Static Test 2 - Rotated Frame. 

Table 6.3 shows the initial values utilized for the states and the expected steady- 

state values. Figures 6.8 and 6.9 present the simulation results. 

P q r a b c d 

Initial Values 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Steady-state Values 0 0 0 0.5 0.5 0.5 0.5 

Table 6.3. Static Test 2 - Initial and Steady-state Values. 

57 



Covergence of Angular Rates 
~.  1 
u 
0) 

■52 

E -1 

X 
( )              0.5 1 1.5 2 2.5                3 

ü   1 

Ü 
•■=     1 i • 

Figure 6.8. Static Test 2 - Convergence of Angular Rates. 

Covergence of Quaternion Components - ai + bj + ck + d 
1 

0.5 

■a 0.5 

A 
0 0.5 1 1.5 2 2.5                3 

A 
■ 

0 0.5 1 1.5 2 2.5                3 

A 
0 0.5 1 1.5 2 2.5                3 

A 
1 

0.5 1 1.5 2 
time (sec) 

2.5 

Figure 6.9. Static Test 2 - Convergence of Quaternion Components. 

58 



3. Static Test 3 - Frames Related by the Quaternion (0,0.707,0,0.707) 

Figure 6.10 shows the position of the vectors involved in the measurements in 

both frames. This case corresponds to rotating the body frame about the y-axis through an 

angle of 90 degrees. 

► y 

Earth Frame 

► y 

Body Frame 

Figure 6.10. Static Test 3- Frame Rotated About One of Its Axis. 

Table 6.4 shows the initial values utilized for the states and the expected steady- 

state values. Figures 6.11 and 6.12 present the simulation results. 

P q r a b c d 

Initial Values 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Steady-state Values 0 0 0 0 0.71 0 0.71 

Table 6.4. Static Test 3 - Initial and Steady-state Values. 

59 



Covergence of Angular Rates 

Ü 
S> 
CO 

1-1 
( 

0 1 
V 

JO 
■a 
2   0 

o 

"-■\ 

~-   1 
ü 
CD 

■2 

1 0 

CB      . 
> "1 

C 

\  

)               0.5 1 1.5 2 2.5 3 

)                0.5 1 1.5 2 2.5 3 

\ 

■ 

)               0.5 1 1.5 
time (sec) 

2 2.5 3 

Figure 6.11. Static Test 3 - Convergence of Angular Rates 

1 

CD     0 

-1 
c 

1 

n 0.8 

Cove rgence c if Quaternion Com po nents - ai + bj + ck + d 

A 
) 0.5 1                 1.5 2 2.5               3 

A 
i 

0.6 

1C 

o   0 

i 
, 

) 0.5 1                1.5 2  . 2.5               3 

\ 

■o 0.8 

) 0.5 1                1.5 2 2.5               3 

A 
n R . . 

0 0.5 1 1.5 2 2.5 3 
time (sec) 

Figure 6.12. Static Test 3 - Convergence of Quaternion Components. 

60 



B.       DYNAMIC TESTS OF THE COMPLETE FILTER 

The dynamic tests intend to verify if the filter correctly estimates the attitude 

parameters when the body is moving. 

Unlike the convergence and static tests, where the data is easily generated by one 

rotation of the values of gravity and local magnetic field vectors, in the dynamic tests the 

attitude is changing continuously. In this case a procedure to generate the data is more 

complex and involves computing, at each step, the body orientation. The procedure is 

described as follows. 

1.        Generating Data 

Suppose body and earth frame are coincident such that the initial attitude 

parameters (Euler angles or quaternions) are known. If a rotation is applied to the body, 

one can easily determine how the parameters evolve in time by integrating Equation 3.6 

or the Euler equations [Ref. 12]. In the first case, the quaternion components are obtained 

directly whereas in the second Euler angles need to be converted into direct cosine matrix 

and then quaternions. 

As the goal is to check the quaternion filter output, the first option would not 

work with quaternion during the data generation. Therefore, the process of generating 

data for the experiment has four steps. An angular rate profile is defined. The integration 

of that profile using Euler equations leads to the Euler angles. The initial conditions are 

always null Euler angles corresponding to the position with both frames aligned. Those 

angles are used to make up the rotation matrix that transforms value of gravity and local 

magnetic field vectors from earth frame to body frame. Gaussian noise is added 

61 



representing the measurement noise. Figure 6.13 shows the diagram of the process. 

Appendix C includes the code for the process. 

Angular 
Rates Profile ■ 

P. q. r 

Integration of 
Euler Equations 

Euler 
Angles 

Gravity and 
Earth Magnetic 

Field 

6,4>,q> 

Gaussian 
noise 

Simulated 
Data 

Figure 6.13. Data Generation for Dynamic Tests. 

Two dynamic tests are presented in this thesis. The angular rates are always 

applied as pulses that rotate the body exactly 90 degrees. Thus, it is easy to check if the 

filter converges to the right values. 

2.        Dynamic Test 1 - Gaussian Pulse and Rotation About One Axis 

For this test only rotation about the x-axis is performed. The profile for that 

rotation is a Gaussian pulse as seen in Figure 6.14. When integrated by Euler equations 

the final position of the body frame corresponds to a 90-degree rotation about that axis. 

Figure 6.15 shows both frames after the rotation is finished. 

62 



Values of Angular Rates 

0    20   40   60   80   100  120  140  160   180  200 

time (sec) 

Figure 6.14. Dynamic Test 1 - Angular Rates Profile. 

► y z~+ 

Earth Frame Body Frame 

Figure 6.15. Dynamic Testl - Final Position After Rotation. 

63 



The quaternion relating these two positions can be calculated by applying a 

rotation of 90 degrees about the x-axis. The value of that quaternion is 

n = ( sin 45° (1,0,0 ),cos45°) = £.0.0.^ 2 2 
= (0.71,0,0,0.71 )■ 

Figure 6.16 shows the estimates for of angular rates. The Gaussian pulse is 

correctly estimated as well as the absence of rotation about the y and z-axes. 

Covergence of Angular Rates 

20 40 60 
time (sec) 

80 

100 

100 

100 

Figure 6.16. Dynamic Test 1 - Convergence of Angular Rates. 

Figure 6.17 shows the convergence of the quaternion components. At the 

beginning, they converge almost immediately to the initial values (both frames 

coincident). The final values are exactly the ones calculated above. 

64 



Covergence of Quaternion Components -ai + bj + ck + d 

0.5 

-0.5 

0.5 

-0.5 
I 

1.5 

■o     1 

0.5 

20 

20 

20 

20 

40 

40 

40 

60 

60 

60 

40 60 
time (sec) 

80 

80 

80 

80 

100 

100 

100 

100 

Figure 6.17. Dynamic Test 1 - Convergence of Quaternion Components. 

3.        Dynamic Test 2 - Square Pulse and Two Consecutive rotations 

In this second test two rotations are performed. The profile for those rotations can 

be seen in Figure 6.18. The two square pulses rotate the body consecutively 90 degrees 

about x-axis and 90 degrees about y-axis. In this case, the final position after the first 

rotation is the same of the dynamic test 1 and the compound rotation is equivalent to a 

single rotation through 120 degrees about the axis m = [ 1   1   1 ], which is the same case 

of the static test 2. Therefore, the final quaternion realting both frames is 

« = (0.5,0.5,0.5,0.5). 

Figure 6.19 shows both frames after the rotations are complete. 

65 



Angular Rates Profile 

o 
CD 

"co  0.015 

co 
CD 

_ffl 
3 
a> 
c 
co 

100 150 200 

time (sec) 

p q 

l ; 

\ 

r        '< r 

250 300 

Figure 6.18. Dynamic Test 2 - Angular Rates Profile. 

z 
i 

-► y 

t 
g 

►   X 

Earth Frame Body Frame 

Figure 6.19. Dynamic Test 2 - Final Position After Rotations. 

66 



As expected, the filter estimates the angular rates and the quaternion components 

even in the pulse transitions. Figures 6.20 and 6.21 present the results of the estimates. 

~ 0.05 
Covergence of Angular Rates 

i i i 

GO WP* 'Wfl' "11 "i IMP ii T^W j 

^ 0 «J " iMW*<a^Vf!H^>lK<Htttr'HAM^ 

50 100    150    200    250    300 
time (sec) 

Figure 6.20. Dynamic Test 2 - Convergence of Angular Rates. 

Covergence of Quaternion Components - ai + bj + ck + d 

i» Mwm M *wßß*~**~**m)mim 

50 100 150 200 250 300 

a   0 iM«nii»i>Mn>ii^i)»'»yi|Wii¥M'^»»**' 
fW-r^r  "' 

50 100 150 200 250 300 

ifcHHtMMrf H)(f>>i 1"*' im)mm4*m4<* V**********^ 

■a  1 

3               50             100 150 200            250 300 

^^"WWPWW 

50     100    150    200    250    300 
time (sec) 

Figure 6.21. Dynamic Test 2 - Convergence of Quaternion Components. 

67 



THIS PAGE INTENTIONALLY LEFT BLANK 

68 



VII. CONCLUSIONS 

A.       SUMMARY 

This thesis presented a complete design of an Extended Kaiman filter for real- 

time estimation of rigid body motion attitude. The use of quaternions to represent 

rotations, instead of Euler angles, eliminated the long-standing problem of singularities 

called "gimbal lock" defined in Chapter II. 

A simple first-order process model for rigid body angular rate measurements was 

defined, which closely matched real process data obtained from angular rate sensors. 

The quaternion rates were nonlinearly related to the current quaternion and the angular 

rates. The process model converted angular rates into quaternion rates, which were 

integrated to obtain quaternions. 

Two approaches to the Kaiman filter design were investigated. The first approach 

used nine output equations: three angular rates, three components of linear acceleration, 

and three components of the earth magnetic field. Since these output equations were 

highly nonlinear functions of the process state variables, the partial derivatives needed 

for the Kaiman filter design were very complicated. As a result, it was decided that a 

filter formulated with these equations would not be useful for real-time applications. 

The second approach utilized Gauss-Newton iteration to find the optimal 

quaternion that related the values of linear accelerations and earth magnetic field in the 

body coordinate frame and in the earth coordinate frame. The optimal quaternion was 

used as part of the measurement for the Kaiman filter, which had seven output equations: 

three angular rates and four components of quaternions. Furthermore, the output 

equations were linear and the output matrix was the identity matrix. As a result, the 

partial derivatives were total derivatives and had constant values. The convergence 

algorithm replaced the computation of the partial derivatives of the nine nonlinear 

measurement equations. The computational requirements for the Kaiman filter developed 

using this approach were significantly reduced, making it possible to estimate attitude in 

real time. 

69 



B.       ANALYSIS OF RESULTS 

Extensive tests were conducted to verify the convergence of Gauss-Newton and 

Newton algorithms, and the performance of the Kaiman filter. In almost all cases and for 

both Gauss-Newton and Newton algorithms, the convergence to acceptable values 

occurred in less than three iterations. In very few cases (about 0.5%) where the algorithm 

diverged, the Kaiman filter did not use the quaternion information. The filter 

implementation used only the Gauss-Newton algorithm because it does not involve 

second partial derivatives. 

The filter achieved excellent results for all static and dynamic tests. The 

convergence to steady-state values took only two or three iteration steps. The two 

examples presented in this thesis showed that the filter was able to track angular rates 

either for smooth inputs (Gaussian pulse) or for abrupt ones (square pulses). Similar 

results were observed for the quaternion estimates. They quickly converged to the correct 

values and tracked the orientation of the body frame. No singularities were noticed, even 

when the two consecutive rotations described in Chapter II were applied (static test 2 and 

dynamic test 2). 

C.       SUGGESTIONS FOR FUTURE WORK 

Although the current filter worked well, there is much work that could be done to 

further improve its performance. A few possibilities are as follows. 

First, one can adjust the statistic parameters of the process model such that the 

filter design corresponds to the process to be estimated and sensors to be used. 

Second, to make this filter faster, further work needs to be carried out on the 

convergence algorithm. The fact that it optimizes a function that includes a block 

diagonal matrix can be used to simplify the algorithm, mainly the steps involving matrix 

inversion. 

Third, the filter should be tested using real data obtained from the MARG sensors 

currently under development at the NPS. 

70 



Finally, the best test would be the application of the attitude estimation into a 

filter that estimates position of a body or vehicle in real-time. 

71 



THIS PAGE INTENTIONALLY LEFT BLANK 

72 



APPENDIX A - ROUTINES FOR CONVERGENCE TESTING 

Al.     GAUSS-NEWTON METHOD 

% 
% Gauss-Newton Method - Normalized Guess 
% 
% Evaluate the convergence for angles of rotation between 10 and 350 
% degrees 
% 
%    By Joäo Luis Marins, Monterey, July 2000. 

clc;  clear; 

yb = input('Enter the a six-element vector in body coordinates : '); 
h = input('Enter the axis of rotation (three-element row vector) : '); 

res = []; 

for theta = 10:20:350 

theta = theta*pi/180; 

% Define the measurement noise 
var = 0; 
noise = sqrt(var)*randn(6,1); 

%  Calculate the quaternion for the angle and axis chosen 
h = h/(sqrt(h*h') ) ; 
n= [ ((sin(theta/2))*h)' ; cos(theta/2)]'; 

% Rotate the known vector and add measurement noise 
a=n(l);  b=n(2);  c=n(3);  d=n(4); 
M= [dA2+aA2-bA2-cA2   2*(a*b-c*d)     2*(a*c+b*d); 

2*(a*b+c*d)    dA2+b~2-cA2-aA2   2*(b*c-a*d); 
2*(a*c-b*d)      2*(b*c+a*d)    dA2+cA2-aA2-bA2]; 

R = [M zeros(3) ; zeros(3) M]; 
ye = (R*yb'); 
ye = ye + noise; 

% Distance between correct value and guess 
n_hat = (n - [0.02 0.02 0.02 0.02])'; 

ac_n =[]; 

%  Three iterations using the normalized quaternion 
for i=l:3 

n_hat = n_hat/(sqrt(n_hat'*n_hat)); 

73 



if i==l 
n_guess = n_hat; 

end 

ac_n = [ac_n n_hat]; 

a=n_hat(1) ,- b=n_hat(2) ; c=n_hat(3); d=n_hat(4) ; 

%  Calculate the partial derivatives needed for the Jacobian 
R_a = [ a b c ; b -a -d 
d_R_a = 2*[R_a zeros(3) ; 
R_b = [-b  a d ; a  b  c 
d_R_b = 2*[R_b zeros(3) ; 
R_c = [-c -d a ; d -c  b 
d_R_c = 2*[R_c zeros(3) ,- 
R_d = [ d -c b ; c  d -a 

c  d -a]; 
zeros(3) R_a] 
-d c -b]; 

zeros(3) R_b] 
a b c] ; 

zeros(3) R_c] 
-b a d]; 

d_R_d = 2*[R_d zeros(3) ; zeros(3) R_d] 

jacobian = -[  (d_R_a*yb')' ; (d_R_b*yb')' ; 
(d_R_c*yb') ' ; (d_R_d*yb')']' ; 

%  Rotate the measured vector using the quaternion guess 
%  and calculate the error between real value and rotated one 
M_hat = [d^2+a/s2-b/"2-c"2    2* (a*b-c*d)      2* (a*c+b*d) ,- 

2*(a*b+c*d)     d^2+b^2-c"2-a/v2    2* (b*c-a*d) ; 
2*(a*c-b*d)      2*(b*c+a*d)     d^2+cA2-a~2-bA2]; 

R_hat = [M_hat zeros(3) ; zeros(3) M_hat]; 

err = ye - R_hat*yb'; 

%  Calculate next quaternion using previous one and the Jacobian 
n_hat = n_hat - inv(jacobian'*jacobian)*jacobian'* err; 

end 

n_hat = n_hat/(sqrt(n_hat'*n_hat)); 
res = [res ; round(theta*180/pi) n n_guess' n_hat']; 

end 

result = [res(:,l:2) res(:,10) res(:,3) res(:,ll) res(:,4) res(:,12) 
res(:,5) res(:,13)]; 

%  Write the results to an excel file,  which must be opened 
channel = ddeinit('excel', 'Converge.xls'); 
re = ddepoke(channel,'r2cl:rl9c9', result); 
re = ddeterm(channel); 

74 



A2.     NEWTON-METHOD 

% 
%  In order to use the Newton Method the only change is to replace 
%  the part inside the loop with the code below 
% 

ac_n = [ac_n n_hat]; 

a=n_hat(1); b=n_hat(2); c=n_hat(3); d=n_hat(4) ; 

dM_a2 : 
dR_a2 = 
dM_b2 : 
dR_b2 = 
dM_c2 = 
dR_c2 = 
dM_d2 = 
dR_d2  = 

dM_ab = 
dR_ab = 
dM_ac = 
dR_ac = 
dM_ad = 
dR_ad = 
dM_bc : 
dR_bc = 
dM_bd : 
dR_bd = 
dM_cd = 
dR_cd = 

auxl = 

[ 2 0 0 ; 0 -2 
[dM_a2 zeros(3 
[-2 0 0 ; 0 2 
[dM_b2 zeros(3 
[-2 0 0 ; 0 -2 
[dM_c2 zeros(3 
[ 2 0 0 ; 0 2 
[dM_d2 zeros (3 

[0 2 0 
[dM_ab 
[0 0 2 
[dM_ac 
[0 0 0 
[dM_ad 
[0 0 0 
[dM_bc 
[0 0 2 
[dM_bd 
[0 -2 0 
[dM_cd 

; 2  0 
zeros{3 
; 0  0 
zeros(3 
; 0  0 
zeros(3 
; 0  0 
zeros(3 
; 0  0 
zeros(3 

; 2  0 
zeros(3 

0 ; 0 0 -2] ; 
;zeros (3) dM_a2]; 
0 ; 0 0 -2] ; 
; zeros(3) dM_b2]; 
0 ; 0 0  2 ] ; 
;zeros(3) dM_c2]; 
0 ; 0 0  2 ] ; 
;zeros(3) dM_d2]; 

0 ; 0  0 
;zeros(3) 
0 ; 2  0 
;zeros(3) 
2 ; 0  2 
;zeros(3) 
2 ; 0  2 
;zeros(3) 
0 ; -2 0 
;zeros(3) 
0 ;  0 0 
;zeros(3) 

0]; 
dM_ab]; 
0]; 
dM_ac]; 
0]; 
dM_ad]; 
0]; 
dM_bc]; 
0]; 
dM_bd]; 
0]; 
dM_cd]; 

[yb'*dR_a2*err yb'*dR_ab*err yb'*dR_ac*err yb'*dR_ad*err; 
yb'*dR_ab*err yb'*dR_b2*err yb'*dR_bc*err yb'*dR_bd*err; 
yb'*dR_ac*err yb'*dR_ab*err yb'*dR_c2*err yb'*dR_cd*err; 
yb'*dR_ad*err yb'*dR_bd*err yb'*dR_cd*err yb'*dR_d2*err]; 

R_a = [ a b c ; b -a -d ;  c d -a]; 
d_R_a = 2*[R_a zeros(3) ; zeros(3) R_a]; 
R_b = [-b a d ; a b c ; -d c -b]; 
d_R_b = 2*[R_b zeros(3) ; zeros(3) R_b]; 
R_c = [-c -d a ; d -c  b ;  a b  c] ; 
d_R_c = 2*[R_c zeros(3) ; zeros(3) R_c] ; 
R_d = [ d -c b ; c  d -a ; -b a  d]; 
d_R_d = 2*[R_d zeros(3) ; zeros(3) R_d]; 

aux2 = [(d_R_a*yb)' ; (d_R_b*yb)' ;(d_R_c*yb)' ;(d_R_d*yb)' ]; 

%  Rotate the measured vector using the quaternion guess 
%  and calculate the error between real value and rotated one 
M_hat = [dA2+a"2-bA2-c"2    2*(a*b-c*d)      2*(a*c+b*d); 

2*(a*b+c*d)     dA2+bA2-cA2-aA2   2*(b*c-a*d); 
2*(a*c-b*d)      2*(b*c+a*d)    dA2+cA2-aA2-b"2]; 

75 



R_hat = [M_hat zeros(3) ; zeros(3) M_hat]; 

err = ye - R_hat*yb'; 

%  Calculate next quaternion using previous one, the gradient 
%  and the Hessian 

grad = -2*aux2*err; 
hess = -2*(auxl-aux2*aux2') ; 
n_hat = n_hat - inv(hess)*grad; 

76 



APPENDIX B - EXTENDED KALMAN FILTER 

Bl.     MAIN PROGRAM 
%  This is the main program of the Extended Kaiman filter 
%  designed for estimating attitude of a body. The attitude 
%  parameters are quaternions. 
% 
% 
% 
% 

The measurements should be genrated in advance or collected 
in real experiment and should be written to an excel file. 
This file must be opened when the filter runs. 

%  This program calls three other routines: 
% - converg : the convergence algorithm, can be Newton or 
% Gauss-Newton; 
% - transition : allows the projection ahead through the 
% linearization o£  the state transition matrix; 
% - projection : allows the projection ahead using the ODE45 
% integration. 
% 
% By Joäo Luis Marins, Monterey, July 2000. 

clc;  clear; 

%  Reading measurements (p,q,r,gx,gy,gz,hx,hy,hz) 
%  The data is read from an excel file, which must be opened 
sim_data = []; 
channel = ddeinit('excel', 'dynamic_2.xls'); 
sim_data = ddereq(channel,'rlcl:r2400c9'); 
re = ddeterm(channel); 

%  Definitions 
run_time = 4.50; 
T = 0.125; 
samp = run_time*60/T; 

simulation time in minutes 
resolution time in seconds 
number of samples 

%  Time constants used indide the routines transition and projection 
tau_rx = 0.002; 
tau_ry = 0.15; 
tau_rz = 1.0; 

% Values of std dev used in the Q matrix 
stdl = le-7; 
std2 =0.01 
std3 =0.30 

E[w'*w] 

%  Process model - noise vector for angular rates 
randn('state',sum(100*clock)); 
wrx = stdl*randn(l,samp); 
wry = std2*randn(l,samp); 
wrz = std3*randn(l,samp) ; 

77 



%  Process model - noise vector for quaternions - no noise 
wna = zeros(1,samp); 
wnb = zeros(1,samp); 
wnc = zeros(1,samp); 
wnd = zeros(1,samp); 

%  System noise vector 
w = [ wrx ; wry ; wrz ; wna ; wnb ; wnc ; wnd ]; 

%  Measurements - noise vector for angular rates 
vrx = randn(1,samp); 
vry = randn(1,samp); 
vrz = randn(1,samp); 

% Measurements - noise vector for quaternions 
vna = randn(1,samp); 
vnb = randn(1,samp); 
vnc = randn(1,samp) ; 
vnd = randn(1,samp); 

%  Measurement noise vector 
v = [ vrx ; vry ; vrz ; vna ; vnb ; vnc ; vnd ]; 

%  Step 0 : Initial conditions 
x_hat_minus = [ 0.01 ; 0.01 ; 0.01 ; 0.5 ; 0.5 ; 0.5 ; 0.5 ] ; 

%  Initial covariance matrix 
P_minus = diag([ 0.5 0.5 0.5 0.5 0.5 0.5 0.5]); 

%  Matrices for flag = 0 (quaternions do not converge) 
R_0 = diag([(7.36e-5)*2 (0.015)*2 (0.029)*2]); 
H_0 = [eye(3)  zeros(3,4)] ; 

%  Matrices for flag = 1 (quaternions converge) 
R_aux = diag([(0.110*2) (0.167*2) (0 . 045*2) (0 . 03*2 ) (0 . 03*2) (0.03*2)]); 
H_l = eye(7); 

%  Process noise covariance matrix 
Q = diag([ stdl*2 std2*2 std3*2 0 0 0 0]); 

x_hat_plus_cum = [x_hat_minus]; 

%  Accumulate all the estimates 
n_acum = []; 

%  Registry number of times the convergence algorithm diverges 
count_flag = 0; 
flag_cum = []; 

for k = 2:samp 

%  Step 1 : Read sensors (angular rates, gravity, and magnetic field) 

ye = [0 ; 0 ; -1 ; -0.5 ; 0 ; sqrt(3)/2 ]; 
g_norm = (sim_data(k,4:6))'/sqrt((sim_data(k,4:6))*(sim_data(k,4:6))'); 

78 



h_norm = (sim_data(k,7:9))'/sqrt((sim_data(k,7:9))*(sim_data(k,7:9)) ') ; 

yb = [ g_norm ; h_norm ]; 

%  First guess is the current quaternion 
guess = x_hat_minus(4:7); 

%  Step 2 : Converge the quaternions using x_hat(k|k-l) 

[n,flag,A] = Converg(ye,yb,guess,k) ; 
flag_cum = [flag_cum flag]; 
P_minus = diag([ 0.5 0.5 0.5 0.5 0.5 0.5 0.5]); 
n_acum = [n_acum n]; 

if flag ==1  %  quaternion converge 

z = [(sim_data(k,l:3)) ' ; n] ; 

%  The A matrix relates the covariance of the measurement 
% noise (6 by 6) to the covariance of the quaternions 
%  after convergence (4 by 4) 
R_l = [ R_0 zeros(3,4) ; zeros(4,3) A*R_aux*A' ]; 

%  Step 3 : Determine the Kaiman gain 
K = P_minus*H_l'*inv(H_l*P_minus*H_l'+ R_l) ; 

%  Step 4 : Update estimate with measurement 
x_hat_plus = x_hat_minus + K*[z - H_l*x_hat_minus]; 

%  Step 5 : Compute error covariance for updated estimate 
P_plus = (eye(7) - K*H_1)*P_minus; 

else  %  quaternion diverge 

z= t(sim_data(k,l:3)) '] ; 

%  Step 3 : Determine the Kaiman gain 
K = P_minus*H_0'* inv(H_0*P_minus*H_0'+ R_0); 

%  Step 4 : Update estimate with measurement 
x_hat_plus = x_hat_minus + K*[z - H_0*x_hat_minus]; 

%  Step 5 : Compute error covariance for updated estimate 
P_plus = (eye(7) - K*H_0)*P_minus; 

count_flag = count_flag + 1; 

end 

x_hat_plus_cum = [x_hatjplus_cum x_hat_plus] ; 

%  Step 6 : Project ahead 
phi = transition(x_hat_plus) ; 
P_minus = phi*P_jplus*phi'+ Q; 
[ti   ,   x_aux]   = ode45('projection',[0  T],x_hat_plus); 

79 



x_hat_minus = (x_aux(find(ti==T),:))'; 

end 

m = length(x_hat_plus_cum(l,:)); 

figured) ; 
subplot(311);plot((l:m)*0.125/x_hat_plus_cum(l,:),'b'); 
set (gca,'LineWidth',1.5,'FontSize',12);hold; 
title('Covergence of Angular Rates'); ylabel('roll (rad/sec)'); 
subplot(312);plot((l:m)*0.125,x_hat_plus_cum(2,:),'b'); 
set (gca,'LineWidth',1.5,'FontSize',12);hold; 
ylabel('pitch (rad/sec)'); 

subplot(313);plot((l:m)*0.125,x_hat_plus_cum(3,:),'b'); 
set (gca,'LineWidth',1.5,'FontSize',12);hold; 
ylabel('yaw (rad/sec)');   xlabel('time (sec)'); 

figure(2); 
subplot(411);plot((l:m)*0.125,x_hat_j?lus_cum(4,:),'b'); 
set (gca,'LineWidth',1.5,'FontSize',12);hold; 
title('Covergence of Quaternion Components - ai + bj + ck + d') 

ylabel('a'); 
subplot(412);plot((l:m)*0.125,x_hat_plus_cum(5,:),'b'); 
set (gca,'LineWidth',1.5,'FontSize',12);hold; 
ylabel('b'); 
subplot(413);plot((l:m)*0.125,x_hat_plus_cum(6,:),'b'); 
set (gca,'LineWidth',1.5,'FontSize',12);hold; 
ylabel('c') ; 
subplot(414);plot((l:m)*0.125,x_hat_plus_cum(7,:),'b'); 
set (gca,'LineWidth',1.5,'FontSize',12);hold; 
xlabel('time (sec)'); 
ylabel('d'); 

80 



B2.  CONVERGENCE ROUTINE 

function    [n,flag,A] = converg(ye,yb,guess,k) 

% This function uses the Gauss-Newton method to find the best 
% quaternion that rotates the measurements of gravity and magnetic■ 
% field from body coordinates to earth coordinates. The first guess 
% is the value calculated from the state equations. The calculated 
% values are normalized at each iteration. 
% The Gauss-Newton is a first order approximation where the 
% Jacobian is used instead of the gradient and hessian of the 
% Newton method. 
% The flag indicates if the quaternion converged to a value close 
% to the initial guess or not (1 or 0). The threshold can be 
% adjusted. 
"5 

% By Joäo Luis Marins, Monterey, June 2000. 

n_hat = guess; 
ac_n = []; 

for i=l:l 

%    Normalize the quaternion 
n_hat■= n_hat/(sqrt(n_hat'*n_hat)); 
ac_n = [ac_n n_hat]; 

a=n_hat (1) ;      b=n_hat (2) ;      c=n_hat (3) ,-      d=n_hat (4) ; 

%  Calculate the partial derivatives needed for the Jacobian 
R_a = [ a b c ; b -a -d ;  c  d -a]; 
d_R_a = 2*[R_a zeros(3) ; zeros(3) R_a]; 
R_b = [-b a d ; a b  c ; -d c -b]; 
d_R_b = 2*[R_b zeros(3) ; zeros(3) R_b]; 
R_c = [-c -d a ; d -c b ;  a b c]; 
d_R_c = 2*[R_c zeros(3) ; zeros(3) R_c]; . 
R_d = [ d -c b ; c  d -a ; -b a  d]; 
d_R_d = 2*[R_d zeros(3) ; zeros(3) R_d]; 

jacobian = -[  (d_R_a*yb')' ; (d_R_b*yb')' ; 
(d_R_c*yb■)' ; (d_R_d*yb')']'; 

%  Rotate the measured vector using the quaternion guess 
%  and calculate the error between real value and rotated one 
M_hat = [d^2+a^2-b~2-c"2   2*(a*b-c*d)     2*(a*c+b*d); 

2*(a*b+c*d)     d"2+b^2-c/v2-a"2   2* (b*c-a*d) ; 
2*(a*c-b*d)      2*(b*c+a*d)     d/v2+c^2-a^2-bA2] ; 

R_hat = [M_hat zeros(3) ; zeros(3) M_hat]; 

err = ye - R_hat*yb'; 

81 



%  Calculate next quaternion using previous one and the Jacobian 
n_hat = n_hat - inv(jacobian'*jacobian)*jacobian'*err; 

end 

n_hat = n_hat/(sqrt(n_hat'*n_hat)) ,- 

%    Calculate the matrix that converts the measurement errors 
%    of the six sensors into the calculated measurement error 
%    of the four computed quaternions 
A = inv(jacobian'*jacobian)*jacobian'*R_hat; 

%    Check if the algorithm converges 
distance = sqrt(sum((n_hat-guess) . A2) ) ; 
n = n_hat; 

if    (k == 2) 
flag = 1; 

elseif (distance <= 0.5) 
flag = 1; 

else 
flag = 0; 

end 

82 



B3. LINEARIZATION OF THE STATE TRANSITION MATRIX 

function   xprime = projection(t,x); 

% This function is an ODE file with the differential equations 
% describing the state equations for the filter. The filter calls 
% this routine using The ODE45 function when projecting ahead 
% (calculating x_hat_rainus). 
% 
% By Joäo Luis Marins, Monterey, July 2000. 

%    time constants for angular rates 
tau_rx = 0.002; 
tau_ry = 0.15; 
tau_rz = 1.00; 

xprime = [-x(l)/tau_rx; 
-x(2)/tau_ry; 
-x(3)/tau_rz; 
( x(3)*x(5)-x(2)*x(6)+x(l)*x(7))/ 

/(2*sqrt(x(4)"2+x(5)"2+x(6)"2+x(6)"2)); 
(-   x(3)*x(4)+x(l)*x(6)+x(2)*x(7))/ 

/(2*sqrt(x(4)/v2+x(5)/v2+x(6)"2+x(6)A2)) ; 
( x(2)*x(4)-x(l)*x(5)+x(3)*x(7})/ 

(2*sqrt(x(4)/v2+x(5) A2+x(6)A2+x(6) A2) ) ; 
(-x(l)*x(4)-x(2)*x(5)-x(3)*x(6))/ 

(2*sqrt(x(4)A2+x(5)A2+x(6)A2+x(6)A2))]; 

83 



B4.      PROJECT AHEAD USING ODE45 

function [phi] = transition(x_hat_plus) 

This function calculates the state transition matrix phi, 
which is the linearization of the F matrix. 
The filter calls this routine when projecting ahead 
(calculating P_minus). 

%    resolution time in seconds 
T = 0.01; 

%    time constants for angular rates 
tau_rx = 0.002; 
tau_ry = 0.15; 
tau_rz = 1.0; 

xl = x_hat_plus(1) 
x2 = x_hat_plus(2) 
x3 = x_hat_plus(3) 
x4 = x_hat_plus(4) 
x5 = x_hat_plus(5) 
x6 = x_hat_plus(6) 
x7 = x_hat_plus(7) . 
n2 = sqrt(x4~2 + x5A2 + x6A2 + x7A2); 

fl 
f2 
f3 
f4 
f5 
f6 
f7 

-xl/tau_rx; 
-x2/tau_ry; 
-x3/tau_rz; 
0.5*( x3*x5 
0.5*(-x3*x4 
0.5*( x2*x4 
0.5*(-xl*x4 

x2*x6 
xl*x6 
xl*x5 
x2*x5 

+ xl*x7)/n2 
+ x2*x7)/n2 
+ x3*x7)/n2 
- x3*x6)/n2 

Derivatives for linearization 

dfl_xl 
df2_x2 
df3_x3 

1 - T/tau_rx; 
1 - T/tau_ry; 
1 - T/tau_rz; 

df4_xl = 0.5*( x7/n2) 
df4_x2 = 0.5*(-x6/n2) 
df4_x3 = 0.5* ( x5/n2) 
df4_x4 = 1 + 0.5*(-f4*x4/n2A3); 
df4_x5 = 0.5* ( x3/n2 - f4*x5/n2/v3) 
df4_x6 = 0.5*(-x2/n2 - f4*x6/n2"3) 
df4_x7 = 0.5* ( xl/n2 - f4*x7/n2~3) 

df5_xl = 0.5* ( x6/n2) 
df5_x2 = 0.5* ( x7/n2) 
df5_x3 = 0.5*(-x4/n2) 
df5_x4 = 0.5*(-x3/n2 - f5*x4/n2A3); 

84 



df5_x5 = 1 + 0.5*(-f5*x5/n2A3); 
df5_x6 = 0.5* ( xl/n2 - f5*x6/n2A3); 
df5_x7 = 0.5*( x2/n2 - f5*x7/n2A3); 

df6_xl = 0.5*(-x5/n2); 
df6_x2 = 0.5*( x4/n2); 
df6_x3 = 0.5*( x7/n2); 
df6_x4 =, 0.5*( x2/n2 - f6*x4/n2A3); 
df6_x5 = 0.5*(-xl/n2 - f6*x5/n2A3); 
df6_x6 = 1 + 0.5*(-f6*x6/n2A3); 
df6_x7 = 0.5* ( x3/n2 - f6*x7/n2A3); 

df7_xl = 0.5*(-x4/n2); 
df7_x2 = 0.5*(-x5/n2); 
df7_x3 = 0.5*(-x6/n2); 
df7_x4 = 0.5*(-xl/n2 - f7*x4/n2A3); 
df7_x5 = 0.5*(-x2/n2 - f7*x5/n2A3); 
df7_x6 = 0.5*(-f7*x7/n2A3); 
df7_x7 = 1 + 0.5*(-x3/n2 - f7*x6/n2A3) 

phi = [ dfl_xl    0       0       0 
0     df2_x2    0       0 
0       0     df3_x3     0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

df4_xl   df4_x2  df4_x3  df4. _x4 df4. _x5 df4_ _x6 df4. _x7 
df5_xl   df5_x2  df5_x3  df5. _x4 df5. _x5 df5_ _x6 df5. _x7 
df6_xl   df6_x2  df6_x3  df6. -x4 df6. _x5 df6. _x6 df6. _x7 
df7_xl    df7_x2   df7_x3   df7. _x4 df7. .x5 df7_ _x6 df7. _x7 ]; 

85 



THIS PAGE INTENTIONALLY LEFT BLANK 

86 



APPENDIX C - DATA GENERATION FOR SIMULATION 

Cl.     MAIN PROGRAM 
% This program generates measured values of gravity and local 
% magnetic field by integrating Euler equations with a profile for 
% the angular rates. 
% The Euler angles obtained from the euler equations are 
% used to make up a direct cosine matrix and then to rotate 
% values in earth frame into body frame. 
% The measurement noise variance can be chosen. 
% The final values are written to a excel file so that they can be 
% read later by the Extended Kaiman filter. 
% 
% It calls the routine gene_euler which contains the Euler equations 
% to be used by the ODE45 integration routine. 
Q, 

%    By Joäo Luis Marins, Monterey, May 2000. 

clear; clc; 

x = [ ] ; 

%  Creating angular rates profile (p,q,r) 

pi = [zeros(100,1) ; 0.02*ones(629,1) ; zeros(500,1)]; 
ql = [zeros(1229,1)]; 
rl = [zeros(1229,1)]; 

p2 = [zeros(1229,1)] 
q2 = [ zeros(100,1) 
r2 = [zeros(1229,1)] 

0.02*ones(629,l) ; zeros(500,1)]; 

sim_pqr = [pi ql rl ; p2 q2 r2]; 

%  Define the initial values for the Euler angles 
xO = [0  0  0] ; 

%  Integrate Euler equations 
for i=l:2400 

[tl,xl] = ode45('gene_euler', [0;0.125],[ xO';sim_pqr(i,:)']); 
[a,b] = size(xl); 
xO = xl(a,l:3); 
x = [x ; xO]; 

end 

angles = x; 

%  Gravity and local magnetic field in earth frame 
gO = [0 ; 0 ; -1];      h0 = [-0.5 ; 0 ; sqrt(3)/2]; 

result = []; 

87 



%  Calculate the direct cosine matrix to rotate the vector from 
%  earth frame into body frame 

for i=l:2400 
phi = angl es(i, 1) ; theta = angles(i,2); 

C_phi = [ 1 
0 
0 

0 
cos(phi) 

-sin(phi) 

0 
sin(phi) ; 
cos(phi) ]; 

C_theta = [ cos(theta 
0 

sin(theta 

)  o 
1 

)  o 

-sin(theta) ; 
0 

cos(theta) ]; 

C_psi = [ cos(psi) 
-sin(psi) 

0 

sin(psi) 
cos(psi) 

0 

0 ; 
0 ; 
1 ]; 

psi = angles (i, 3) ,- 

Rotating the vectors 
gl = C_phi*C_theta*C_psi*gO; 
hi = C_phi*C_theta*C_psi*hO; 

result = [result ; [ gl' hi' ]]; 
end 

%  Adding measurement noise 
meas = [sim_pqr(1:2400,:) result(1:2400, :)]; 

noise = randn(2400,9); 

noise(: ,1) 
noise(: ,2) 
noise(: ,3) 
noise(: ,4) 
noise(: ,5) 
noise(: ,6) 
noise(: ,7:9 

= 2e-3*noise( 
= 2e-3*noise( 
= 2e-3*noise( 
= 0.02*noise( 
= 0.02*noise( 
= 0.02*noise( 
) = 0.02*noise(:,7:9); 

:,D; 
:,2); 
: , 3 ) ; 
:,4) ; 
:,5) ; 
:,6); 

meas_noise = meas + noise; 

% Writing data to an excel file 
channel = ddeinit('excel', 'dynamic_2.xls'); 
re = ddepoke(channel,'rlcl:r2400c9', meas_noise) ; 
re = ddeterm(channel); 

figured) ;plot( (1: 2400) /8 , angles (1: 2400 , : ) ) ; 
figure(2);plot((1:2400)/8,sim_pqr(1:2400,:)); 
figure(3);plot((1:2400)/8,result(1:2400,:)); 

88 



C2.     EULER EQUATIONS 

function' xprime = gene_eulerl(t,x); 

% This function is an ODE file with the Euler equations. 
% 
% The main program calls this routine using the ODE45 function 
% in order to integrate the Euler equations to find the three 
% Euler angles. 
9- *6 

% 
%    By Joäo Luis Marins, Monterey, May 2000. 

%  Euler equations 
xprime = [x(4) + x(5)*sin(x(l))*tan(x(2)) + x(6)*cos(x(l))*tan(x(2)); 

x(5)*cos(x(l)) - x(6)*sin(x(l)); 
x(5)*(sin(x(l))/cos(x(2))) + x(6)*(cos(x(l))/cos(x(2))); 
0; 
0; 
0]; 

89 



THIS PAGE INTENTIONALLY LEFT BLANK 

90 



LIST OF REFERENCES 

1. Hayward, Roger C, Gebre-Egziabher, Demoz, Powell, J. David. GPS-BasedAttitute for 
Aircraft. http://einstein.stanford.edu/gps/ABS/att_for_aircraft_rchl998.html (15 April 2000). 

2. Quine, Ben. Attitude Determination Subsystem. 
http://www.atmosp.physics.utoronto.ca/people/ben/pages/spacecraft/Attitude.html (03 June 
2000). 

3. Leader, D.E., Kaiman Filter Estimation of Underwater Vehicle Position and Attitude Using a 
Doppler Velocity Aided Inertial Motion Unit, Engineer Degree Thesis, Massachusets Institute 
of Technology and Woods Hole Oceanographic Institution, Massachusetts, September 1994. 

4. Bachmann, E. R., Duman, I., Usta, U. Y., McGhee, R.B., Yun, X. P., Zyda, M. J., 
"Orientation Tracking for Humans and Robots Using Inertial Sensors," Proc. of 1999 
Symposium on Computational Intelligence in Robotics & Automation. 

5. Bobick, Nick. Rotating Objects Using Quaternions. 
http://www.gamasutra.com/features/programming/19980703. (26 December 1999). 

6. Kuipers, J.B., Quaternions and Rotation Sequences, Princeton University Press, Princeton, 
New Jersey 1999. 

7. Savage, P. G., Strapdown Inertial Navigation Lecture Notes, Strapdown Associates, Inc., 
Minnetonka, Minesota 1985. 

8. Crassidis, J. L., Markley, F. L., "Predictive Filtering for Attitude Estimation Without Rate 
Sensors," AIAA Journal of Guidance, Control, and Dynamics, Vol. 20, No. 3, May-June 
1997, pp. 522-527. 

9. Brown, R.G. and Hwang, P.Y.C., Introduction to Random Signals and Applied Kaiman 
Filtering, 3rd Edition, John Wiley and Sons, New York 1997. 

10. Hagan, Martin T., Demuth, Howard B., Beale, Mark, Neural Network Design, PWS 
Publishing Company, Boston 1995. 

11. Arslan, S., Testing and Evaluation of the Small Autonomous Underwater Vehicle Navigation 
system (SANS), Master's Thesis, Naval Postgraduate School, Monterey, California, March 
2000. 

12. Stovall, Sherryl L., Basic Inertial Navigation, Naval Air Warfare Center Weapons Division, 
China Lake, California, September 1997. 

91 



THIS PAGE INTENTIONALLY LEFT BLANK 

92 



INITIAL DISTRIBUTION LIST 

1.   Defense Technical Information Center. 
8725 John J. Kingman Rd., STE 0944 
Ft. Belvoir, VA 22060-6218 

2.   Dudley Knox Library  
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, CA 93943-5101 

3.   Chairman, Code EC  
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, CA 93943-5121 

Dr. Xiaoping Yun, Code EC/Yx  
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, CA 93943-5121 

5.   Eric Bachmann, Instructor, Code CS/Bc. 
Computer Science Department 
Naval Postgraduate School 
Monterey, CA 93943-5118 

6.   Dr. Robert G. Hutchins  
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, CA    93943-5121 

7.   Dr. Robert B. McGhee, Code CS/Mz. 
Computer Science Department 
Naval Postgraduate School 
Monterey, CA 93943-5118 

8.   LCDR Joäo Luis Marins  
Rua Salvador de Mendonca, 104 / 303 
Rio Comprido, Rio de Janeiro, RJ 
Brazil, CEP: 20261-030 

93 



9.   Institute de Pesquisas da Marinha  
Rua Ipiru, 2 
Jardim Guanabara, Ilha, Rio de Janeiro, RJ 
Brazil, CEP: 21931-090 

10. Coronel OsnyLisboa  
Institute de Estudos Avancados 
Rodovia dos Tamoios, Km 5,5 
Caixa Postal 6044 
Säo Jose dos Campos, SP 
Brazil, CEP: 12231 

11. Major Carlos Kasemodel  
Institute de Aeronäutica e Espaco 
Praga Mai. Eduardo Gomes, 50 
Säo Jose dos Campos, SP 
Brazil, CEP: 12228-904 

94 


